• Title/Summary/Keyword: Blowing

Search Result 568, Processing Time 0.025 seconds

Experimental Study on the Film Cooling Effectiveness on a Flat Plate with Anti-Vortex Holes

  • Park, Soon Sang;Park, Jung Shin;Kwak, Jae Su
    • International Journal of Aerospace System Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • In this paper, the effects of the anti-vortex hole angle and blowing ratio on the flat plate film cooling effectiveness were experimentally investigated. For the film cooling effectiveness measurement, pressure sensitive paint technique was applied. The experiments were conducted for cylindrical and anti-vortex film cooling holes, and three blowing ratios of 0.25, 0.5, and 1.0 were tested. Two anti-vortex hole angles of 0 and 15 degree with respect to the flow direction were considered. For the cylindrical hole case, the film cooling effectiveness decreased as the blowing ratio increased because of the coolant lift-off. For the angle anti-vortex hole cases, however, higher blowing ratio resulted in higher film cooling effectiveness due to the reduced actual blowing ratio and diminished kidney vortex. For all blowing ratio, the angled anti-vortex hole case showed the highest film cooling effectiveness.

A Numerical Study of Blowing Effect on Wall Heat Trasfer Rate over Blunt-bodies Using Naver-Stokes Method (Navier-Stokes 방법을 이용한 Blowing이 무딘물체 주위의 표면 열전달에 미치는 효과 연구)

  • Kwon Chang Oh;Song Dong Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.92-98
    • /
    • 1997
  • A finite-difference method based on characteristic upwind flux difference splitting has been studied on the blowing effect on the wall heat transfer over blunt-bodies. As the blowing rates increased, the wall heat transfer rate decreased and the temperature gradient also decreased compared with no blowing case. The heat trasfer rate at Mach No. 20 was almost twice higher than that of Mach No. 15 at 50km altitude. The surface blowing can be an effective mechanism to reduce the surface heat transfer rate at hypersonic flight condition.

  • PDF

A study on the moral intelligence and whistleblowing intent (응급구조학과 학생의 도덕지능과 내부공익신고 의도와의 관계)

  • Kim, In-Soon;Choi, Eun-Sook;Lee, Kyoung-Youl
    • The Korean Journal of Emergency Medical Services
    • /
    • v.19 no.3
    • /
    • pp.103-115
    • /
    • 2015
  • Purpose: This study was performed to evaluate ethical ability among paramedic students by analyzing their moral intelligence and whistle-blowing intention. Methods: Data from 117 paramedic students were collected from September 7 - 14, 2015. The questionnaire measured the level of moral intelligence (7 components, 41 items) and whistle-blowing intention (8 items) of paramedic students. Results: The mean score of moral intelligence was 3.07 (${\pm}0.28$) and that of whistle-blowing intention was 3.13 (${\pm}0.42$). Moral intelligence and whistle-blowing intention showed a significantly positive correlation with each other (r = .328, p <.001). Conclusion: It is desirable to introduce moral education contents and methods for paramedic students in order to enhance their moral intelligence and whistle-blowing intention.

The Effects of Balloons Blowing and Kinesio Taping on Vital Capacity (풍선불기와 키네시오 테이핑이 폐활량에 미치는 영향)

  • Lee, Sam-Cheol;Lee, Suk-Jin;Oh, Sang-Boo
    • Journal of Korean Physical Therapy Science
    • /
    • v.18 no.3
    • /
    • pp.1-7
    • /
    • 2011
  • Background : Respiratory muscle weakness has serious clinical consequences. Vital Capacity is the volume of air that is normally exchanged in a single breath. It varies widely with pulmonary health and overall fitness. Purpose : The purpose of this study was to investigate the variation of vital capacity(VC) according to the effects of Kinesio taping and balloons blowing. Methods : Twenty-one non-smokers were participated in this research and these subjects were randomly assigned into three groups; a balloons blowing group(n=7), a Kinesio taping group(n=7), and a balloons blowing and Kinesio taping group(n=7). This experiment was done from June 22, 2009 to July 5, 2009. In order to measure the VC variation effects of Kinesio taping, balloons blowing, and both intervention, an windmill type spiropet was used. The collected data were analyzed statistically by using a paired t-test and ANCOVA. Results : The results of this study were as follows; 1) In the case of balloons blowing, there was a significant difference, 3.35% increase of VC, between before and after 2 weeks experiments(p<.01). 2) In the case of Kinesio taping, there was a significant difference, 11.66% increase of VC, between before and after 2 weeks taping intervention(p<01). 3) In the case of both balloon blowing and Kinesio taping, there was a significant difference, 15.84% increase of VC, between before and after 2 weeks both interventions(p<.01). 4) After 2 weeks experiment, the improvement of VC was shown a significant difference with intergroup(p<.05). Conclusion : From these results, it was revealed that balloons blowing or Kinesio taping, or both interventions were effective to improve VC of healthy adults.

  • PDF

Numerical Study of Flow Control of Dynamic Stall Using Continuous Blowing/Suction (정적 Blowing/Suction을 이용한 동실속 유동 제어에 관한 수치적 연구)

  • Choi S. Y.;Kwon O. J.;Kim J. M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.115-119
    • /
    • 2004
  • The effect of a continuous blowing or suction on an oscillating 2-D NACA0012 airfoil was investigated numerically for the dynamic stall control. The influence of control parameter variation was also studied in the view point of aerodynamic characteristics. The result showed that the blowing control kept a higher lift drag ratio before stall angle but the dynamic stall angle was not exceed to without control result. As the slot position was closer to leading edge, the positive control effect becomes greater. The stronger jet and the smaller jet angel made more favorable roles on the control performance. In the cases of the suction, the overall control features were similar to those of the blowing, but dynamic stall angle was increased, i.e. suction was more effective to control dynamic stall. It was also founded that the suction control was showed better control effect as the slot position moves to trail edge within thirty percentage of chord length. In the simulation for the jet strength and the jet angle control, the same tendencies were observed to those of blowing cases.

  • PDF

A PIV Study of Flow Patterns Over Stationary and Pitch-Oscillating Airfoils with Blowing Jet

  • Lee, Ki-Young;Chung, Hyoung-Seog;Cho, Dong-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.111-120
    • /
    • 2008
  • A particle image velocimetry (PIV) technique was employed to investigate the effects of blowing jet on the flow characteristics over stationary and pitch-oscillating airfoils. The Reynolds number was $7.84{\times}10^5$ based on the chord length. It was found that for stationary airfoil cases, continuous and pulsating blowing jets successfully reduced separated wake region at high angles of attack. A comparison study of two different types of jet blowing indicated that pulsating jet is more effective than continuous jet for flow separation control. Pulsating leading-edge blowing postpones flow separation and increased stall angle of attack by $2^{\circ}{\sim}3^{\circ}$. For pitch-oscillating airfoil cases, the PIV results showed that blowing jet efficiently delays the separation onset point during pitch-up stroke, whereas it does not prevent flow separation during pitch-down stroke, even at angles of attack smaller than static ones.

Enhancement of Airfoil Post-Stall Characteristics via a Jet Blowing (제트 블로잉에 의한 에어포일의 실속후 특성 향상)

  • Lee, Ki-Young;Chung, Heong-Seok;Cho, Dong-Hyun;Sohn, Myong-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.188-197
    • /
    • 2007
  • Active flow control, in the form of steady and unsteady momentum injection via jet blowing was studied. A jet was obtained by pressing a plenum inside the airfoil and ejecting flow out of a thin slot. The normal and drag forces were measured with leading edge or trailing edge blowing Jet and compared with the results obtained with no blowing. The blowing jet has been shown to improve the aerodynamic performance of the airfoil. The steady jet proved more effective than pulsating jet in these experimental conditions. Furthermore for the case of leading edge steady blowing jet, the alleviation of non-linearity in the normal force curve slope can be seen at higher angles of attack. No effective trailing edge jet was observed in this highly separated flow. This shows that the stall control is highly depends on the characteristics of the boundary layer near the jet slot.

The Utility of Used a Blowing Agent in PET/CT (발포제를 이용한 PET/CT의 유용성)

  • Kim, Ki-Jin;Rhim, Jae-Dong;Yoo, Se-Jong;Kim, Jeong-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.1
    • /
    • pp.111-117
    • /
    • 2015
  • When scanning PET/CT, dose not unwrinkle gastric folds can be difficult to diagnose gastric cancer. In this study, we use an blowing agent to evaluate the extension the stomach and usefulness of it. The study enrolled 30 patients who patient with uptake in stomach between January and February 2013. Stomach extension was described as the vertical length of the Water drink group was $61.7{\pm}9.7mm$, horizontal length was $102.5{\pm}17.6mm$ and the vertical length of the Blowing agent group was $74.1{\pm}10.7mm$, horizontal length was $101.5{\pm}14.8mm$ in transverse section. Stomach extension was described as the vertical length of the Water drink group was $109.3{\pm}18.8mm$, horizontal length was $62.7{\pm}18.4mm$ and the vertical length of the Blowing agent group was $123.1{\pm}23.1mm$, horizontal length was $87.6{\pm}14.9mm$ in coronal section. Water drink group SUV decreased 35% and Blowing agent group SUV decreased 56%. Blowing agent group extension was similar or superior than water drink group. Therefore, when using a blowing agent will be able to help clinical.

Effects of Organoclay on the Thermal Insulating Properties of Rigid Polyurethane Foams Blown by Environmentally Friendly Blowing Agents

  • Kim, Youn-Hee;Choi, Seok-Jin;Kim, Ji-Mun;Han, Mi-Sun;Kim, Woo-Nyon;Bang, Kyu-Tae
    • Macromolecular Research
    • /
    • v.15 no.7
    • /
    • pp.676-681
    • /
    • 2007
  • A process designed to synthesize rigid polyurethane foam (PUF) with insulative properties via the modulation of PUF cell size via the addition of clay and the application of ultrasound was assessed. The blowing agents utilized in this study include water, cyclopentane, and HFC-365mfc, all of which are known to be environmentally-friendly blowing agents. The rigid PUFs were prepared from polymeric 4,4'-diphenylmethane diisocyanate (PMDI) and polyether polyol with a density of $50kg/m^3$. In addition, rigid PUFs/clay nanocomposites were synthesized with clay modified by PMDI with and without the application of ultrasound. The PUF generated using water as a blowing agent evidenced the highest tensile strength. The tensile strength of the PUF/nanocomposites was higher than that of the neat PUF and the strength was even higher with the application of ultrasound. The cell size of the PUF/clay nanocomposites was less than that of the neat PUF, regardless of the type of blowing agent utilized. It appears that the higher tensile strength and lower cell size of the PUF/clay nanocomposites may be attributable to the uniform dispersion of the clay via ultrasonic agitation. The thermal conductivity of the PUF/clay nanocomposites generated with HCFC-141b evidenced the lowest value when PUF/clay nanocomposites were compared with other blowing agents, including HFC-365mfc, cyclopentane, and water. Ultrasound has also proven effective with regard to the reduction of the thermal conductivity of the PUF/clay nanocomposites with any of the blowing agents employed in this study. It has also been suggested that the uniformly dispersed clay particles in the PUF matrix function as diffusion barriers, which prevent the amelioration of the thermal insulation property.