• 제목/요약/키워드: Blood-Brain Barrier

검색결과 193건 처리시간 0.023초

대황(大黃)이 뇌허혈 손상에 의한 뇌부종에 미치는 영향 (Effect of Rhei Rhizoma on Brain Edema Induced by MCAO in Rats)

  • 강경화;손낙원;김범회
    • 동의생리병리학회지
    • /
    • 제23권4호
    • /
    • pp.866-871
    • /
    • 2009
  • Brain edema is a major importance in the pathophysiology of CNS injuries including stroke. Ischemic brain edema results from both cytotoxic edema, which is severe in astrocytes at early stage, and vasogenic edema caused by excessive blood-brain barrier (BBB) permeability. The present study was performed to determine the effect of Rhei Rhizoma on brain edema induced by middle cerebral artery occlusion (MCAO) in the rats. The neurological symptom, total infarct volume and edema index caused by MCAO were measured. The changes of Matrix Metalloproteinase-9 (MMP-9) and inducible nitric oxide synthase (iNOS) immunoreactivities were also observed. We found that Rhei Rhizoma extract improved the neurological symptom and attenuated the total infarct volume and brain edema caused by ischemic insult. Rhei Rhizoma extract also attenuated the expression of MMP-9 and iNOS. This results suggest that Rhei Rhizoma has a protective effect on the brain edema caused by ischemic insult.

Loss of Integrity: Impairment of the Blood-brain Barrier in Heavy Metal-associated Ischemic Stroke

  • Kim, Jeong-Hyeon;Byun, Hyeong-Min;Chung, Eui-Cheol;Chung, Han-Young;Bae, Ok-Nam
    • Toxicological Research
    • /
    • 제29권3호
    • /
    • pp.157-164
    • /
    • 2013
  • Although stroke is one of the leading causes of death and disability worldwide, preventive or therapeutic options are still limited. Therefore, a better understanding of the pathophysiological characteristics of this life-threatening disease is urgently needed. The incidence and prevalence of ischemic stroke are increased by exposure to certain types of xenobiotics, including heavy metals, suggesting the possible toxicological contribution of these compounds to the onset or aggravation of stroke. Among the potential targets, we have focused on alterations to cerebral endothelial cells (CECs), which play important roles in maintaining the functional integrity of brain tissue.

Anti-Alzheimer′s drug, taurine transport through the blood-brain barrier in mice and pharmacokinetics

  • Kim, You-Jung;Kang, Young-Sook
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1998년도 Proceedings of UNESCO-internetwork Cooperative Regional Seminar and Workshop on Bioassay Guided Isolation of Bioactive Substances from Natural Products and Microbial Products
    • /
    • pp.193-194
    • /
    • 1998
  • Recently, evaluation of brain transport of taurine which is possible to effect on Alzheimer's disease has investigated in rats. Also, internal carotid artery perfusion (ICAP) method is very useful for measuring of blood-brain barrier (BBB) permeability in rats. But ICAP has difficulties to evaluate of BBB permeability in mice especially. In the present study examines neuropharmaceutials permeability through the BBB in mice by common carotid artery perfusion (CCAP) method that modify ICAP method and require simple surgery. The external carotid artery (ECA) is cannulated with coagulating pterygopalatine artery (PPA) on ICAP method, while CCA is cannulated without coagulating PPA on CCAP method. The CCAP method require 4-5 fold higher infusion rate than ICAP method because an additional factor of 2 must be incorporated to adjust for fluid loss to the extracerebral circulation.

  • PDF

A Blood-brain Barrier Permeable Derivative of 5-Fluorouracil: Preparation, Intracellular Localization, and Mouse Tissue Distribution

  • Im, Jung-Kyun;Biswas, Goutam;Kim, Wan-Il;Kim, Kyong-Tai;Chung, Sung-Kee
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권3호
    • /
    • pp.873-879
    • /
    • 2011
  • 5-Fluorouracil (5-FU), an anticancer agent was covalently attached to the recently developed sorbitol-based G8 transporter, and the conjugate (7) with FITC was found to have an affinity toward mitochondria and to readily cross BBB to gain an entry into mouse brain. Measured by $IC_{50}$, the conjugate (9) without the fluorophore showed enhanced cytotoxic activity toward two types of multidrug-resistant cell lines. These results strongly suggest that the sorbitol-based G8 transporter can be utilized as a good CNS delivery vector.

Neurotoxicity of Paclitaxel and Rapamycin in a Rat Model with Transient Blood-Brain Barrier Opening

  • Cho, Won-Sang;Choi, Jung Hoon;Kwon, O-Ki
    • Journal of Korean Neurosurgical Society
    • /
    • 제65권2호
    • /
    • pp.180-185
    • /
    • 2022
  • Objective : Drug-eluting stents and balloons are occasionally used to reduce restenosis in medically intractable intracranial atherosclerotic stenosis. The authors aimed to determine whether such drugs can cause neurotoxicity due to local effects in a rat model. Methods : Intra-arterial catheters were placed in the right common carotid artery of rats. Mannitol was injected to transiently open the brain-blood barrier (BBB), followed by high-dose drug (paclitaxel and rapamycin) injection. The optimal time interval of transient BBB opening for maximal drug penetration was determined to be 10 minutes. Paclitaxel and rapamycin were intra-arterially administered in various doses. All the rats were neurologically evaluated, and their brain tissues were histologically examined. Results : Neither neurological deficits nor histological abnormalities were observed in all the rats. Conclusion : Paclitaxel and rapamycin did not cause neurotoxicity in a rat model with transient BBB opening.

Regulation of Choline Transport by Oxidative Stress at the Blood-Brain Barrier In Vitro Model

  • Kang, Young-Sook;Lee, Hyun-Ae;Lee, Na-Young
    • Biomolecules & Therapeutics
    • /
    • 제16권1호
    • /
    • pp.14-20
    • /
    • 2008
  • In the present study, we examined how the transport of choline is regulated at the blood-brain barrier (BBB) under the central nervous system (CNS) cellular damages by oxidative stress using a conditionally immortalized rat brain capillary endothelial cells (TR-BBB), in vitro the BBB model. It was also tested whether the choline uptake is influenced by membrane potential, extracellular pH, protonophore (FCCP) and amiloride in TR-BBB cells. In result, $[^3H]choline$ uptake was inhibited by FCCP and dependent on extracellular pH. The treatment of TR-BBB cells with 20 ng/mL tumor necrosis $factor-{\alpha}$ $(TNF-{\alpha})$, 10 ng/mL lipopolysaccharide (LPS), 100 ${\mu}M$ diethyl maleate (DEM) and 100 ${\mu}M$ glutamate resulted in 3.0-fold, 2.6-fold, 1.8-fold and 2.0-fold increases of $[^3H]choline$ uptake at the respective peak time, respectively. In contrast, hydrogen peroxide and raffinose did not show any significant effects on choline uptake. In addition, choline efflux was significantly inhibited by $TNF-{\alpha}$, LPS and DEM producing cell damage states. In conclusion, the influx and efflux transport system for choline existed in TR-BBB cell line and this process was affected by several oxidative stress inducing agents.

Blood-neural Barrier: Intercellular Communication at Glio-Vascular Interface

  • Kim, Jeong-Hun;Kim, Jin-Hyoung;Park, Jeong-Ae;Lee, Sae-Won;Kim, Woo-Jean;Yu, Young-Suk;Kim, Kyu-Won
    • BMB Reports
    • /
    • 제39권4호
    • /
    • pp.339-345
    • /
    • 2006
  • The blood-neural barrier (BNB), including blood-brain barrier (BBB) and blood-retinal barrier (BRB), is an endothelial barrier constructed by an extensive network of endothelial cells, astrocytes and neurons to form functional 'neurovascular units', which has an important role in maintaining a precisely regulated microenvironment for reliable neuronal activity. Although failure of the BNB may be a precipitating event or a consequence, the breakdown of BNB is closely related with the development and progression of CNS diseases. Therefore, BNB is most essential in the regulation of microenvironment of the CNS. The BNB is a selective diffusion barrier characterized by tight junctions between endothelial cells, lack of fenestrations, and specific BNB transporters. The BNB have been shown to be astrocyte dependent, for it is formed by the CNS capillary endothelial cells, surrounded by astrocytic end-foot processes. Given the anatomical associations with endothelial cells, it could be supposed that astrocytes play a role in the development, maintenance, and breakdown of the BNB. Therefore, astrocytes-endothelial cells interaction influences the BNB in both physiological and pathological conditions. If we better understand mutual interactions between astrocytes and endothelial cells, in the near future, we could provide a critical solution to the BNB problems and create new opportunities for future success of treating CNS diseases. Here, we focused astrocyte-endothelial cell interaction in the formation and function of the BNB.

허혈성 뇌졸중 모델에서 혈액-뇌 장벽에 보호효과를 나타내는 한약처방, 한약재 및 활성화합물 (Protective Effects of Traditional Korean Medicine Preparations, Herbs, and Active Compounds on the Blood-brain Barrier in Ischemic Stroke Models)

  • 신수빈;장석주;이나경;최병태;신화경
    • 생명과학회지
    • /
    • 제32권7호
    • /
    • pp.550-566
    • /
    • 2022
  • 뇌졸중은 세계적으로 사망과 장기간인 신체적, 인지적 장애의 주요 원인들 중 하나이며, 매년 약 1,500만명의 사람들에게 영향을 미친다. 뇌졸중의 병태 생리학적 과정은 다수의 사건들이 관여하는 복잡한 과정으로, 그 중 혈액-뇌 장벽(blood-brain barrier: BBB)의 붕괴는 허혈성 뇌손상의 진행에 크게 기여하는 것으로 알려져 있다. 따라서 BBB 붕괴는 뇌졸중의 특징으로 인식되므로 허혈성 뇌졸중에서 BBB 기능 장애를 보호할 수 있는 새로운 치료 전략을 개발하는 것이 뇌졸중 치료에 매우 중요하다. 전통한약은 천연물로 구성되어 있으며, 이는 뇌졸중 치료약 개발을 위한 유망한 원천이 될 수 있다. 실제로 여러 연구에서 뇌졸중에 대한 한의학의 효능이 밝혀져 허혈성 뇌졸중에 대한 한의학적 치료 가치가 부각되고 있다. 본 리뷰에서는 허혈성 뇌졸중으로 인한 BBB 붕괴에 대한 전통적인 한의학의 처방, 탕약, 약재 및 활성 성분의 개선효과에 관한 현재 정보와 기본 메커니즘을 요약 정리하였다. 이러한 연구가 한의학의 신경보호 효과에 대한 추가 조사를 촉진하고 뇌졸중 환자에 대한 한방유래의 임상시험 시행을 활성화하는데 도움이 되기를 기대한다.

Selection of Potential Virulence Factors Contributing to Streptococcus suis Serotype 2 Penetration into the Blood-Brain Barrier in an In Vitro Co-Culture Model

  • Liu, Hongtao;Zhu, Seng;Sun, Yingying;Li, Na;Gu, Jingmin;Sun, Changjiang;Feng, Xin;Han, Wenyu;Jiang, Jianxia;Lei, Liancheng
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권1호
    • /
    • pp.161-170
    • /
    • 2017
  • Meningitis caused by Streptococcus suis serotype 2 (S. suis 2) is a great threat to the pig industry and human health. Virulence factors associated with the pathogenesis of meningitis have yet to be clearly defined, even though many potential S. suis 2 virulence factors have been identified. This greatly hinders the progress of S. suis 2 meningitis pathogenesis research. In this study, a co-culture blood-brain barrier (BBB) model was established using primary porcine brain microvascular endothelial cells and astrocytes, and the whole genome library of S. suis 2 was constructed using phage display technology. Finally, a total of 14 potential virulence factors contributing to S. suis 2 adherence to and invasion of the BBB were selected by analyzing the interactions between the phage library and the co-culture model. Twelve of these factors have not been previously reported in meningitis-related research. The data provide valuable insight into the pathogenesis of S. suis 2 meningitis and potential targets for the development of drug therapies.