References
- O'Donnell, M.J., Xavier, D., Liu, L., Zhang, H., Chin, S.L., Rao-Melacini, P., Rangarajan, S., Islam, S., Pais, P., Mcqueen, M.J., Mondo, C., Damasceno, A., Lopez-Jaramillo, P., Hankey, G.J., Dans, A.L., Yusoff, K., Truelsen, T., Diener, H.C., Sacco, R.L., Ryglewicz, D., Czlonkowska, A., Weimar, C., Wang, X., Yusuf, S. and Investigators, I. (2010) Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet, 376, 112-123. https://doi.org/10.1016/S0140-6736(10)60834-3
- Fisher, M. (2011) New approaches to neuroprotective drug development. Stroke, 42, S24-S27. https://doi.org/10.1161/STROKEAHA.110.592394
- Savitz, S.I. and Fisher, M. (2007) Future of neuroprotection for acute stroke: in the aftermath of the SAINT trials. Ann. Neurol., 61, 396-402. https://doi.org/10.1002/ana.21127
- Roger, V.L., Go, A.S., Lloyd-Jones, D.M., Benjamin, E.J., Berry, J.D., Borden, W.B., Bravata, D.M., Dai, S., Ford, E.S., Fox, C.S., Fullerton, H.J., Gillespie, C., Hailpern, S.M., Heit, J.A., Howard, V.J., Kissela, B.M., Kittner, S.J., Lackland, D.T., Lichtman, J.H., Lisabeth, L.D., Makuc, D.M., Marcus, G.M., Marelli, A., Matchar, D.B., Moy, C.S., Mozaffarian, D., Mussolino, M.E., Nichol, G., Paynter, N.P., Soliman, E.Z., Sorlie, P.D., Sotoodehnia, N., Turan, T.N., Virani, S.S., Wong, N.D., Woo, D., Turner, M.B.; American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2012) Heart disease and stroke statistics--2012 update: a report from the American Heart Association. Circulation, 125, e2-e220. https://doi.org/10.1161/CIR.0b013e318245fac5
- Lo, E.H., Dalkara, T. and Moskowitz, M.A. (2003) Mechanisms, challenges and opportunities in stroke. Nat. Rev. Neurosci., 4, 399-415.
- Dirnagl, U., Iadecola, C. and Moskowitz, M.A. (1999) Patho-biology of ischaemic stroke: an integrated view. Trends Neurosci., 22, 391-397. https://doi.org/10.1016/S0166-2236(99)01401-0
- Macdonald, J.F., Xiong, Z.G. and Jackson, M.F. (2006) Paradox of Ca2+ signaling, cell death and stroke. Trends Neurosci., 29, 75-81. https://doi.org/10.1016/j.tins.2005.12.001
- Graham, S.H. and Chen, J. (2001) Programmed cell death in cerebral ischemia. J. Cereb. Blood Flow Metab., 21, 99-109. https://doi.org/10.1097/00004647-200102000-00001
- Lo, E.H., Moskowitz, M.A. and Jacobs, T.P. (2005) Exciting, radical, suicidal: how brain cells die after stroke. Stroke, 36, 189-192. https://doi.org/10.1161/01.STR.0000153069.96296.fd
- Green, A.R. (2008) Pharmacological approaches to acute ischaemic stroke: reperfusion certainly, neuroprotection possibly. Br. J. Pharmacol., 153 Suppl 1, S325-S338.
- del Zoppo, G.J. (2006) Stroke and neurovascular protection. N. Engl. J. Med., 354, 553-555. https://doi.org/10.1056/NEJMp058312
- Ballabh, P., Braun, A. and Nedergaard, M. (2004) The bloodbrain barrier: an overview: structure, regulation, and clinical implications. Neurobiol. Dis., 16, 1-13. https://doi.org/10.1016/j.nbd.2003.12.016
- Lai, C.H., Kuo, K.H. and Leo, J.M. (2005) Critical role of actin in modulating BBB permeability. Brain Res. Brain Res. Rev., 50, 7-13. https://doi.org/10.1016/j.brainresrev.2005.03.007
- Wolburg, H. and Lippoldt, A. (2002) Tight junctions of the blood-brain barrier: development, composition and regulation. Vasc. Pharmacol., 38, 323-337. https://doi.org/10.1016/S1537-1891(02)00200-8
- Matter, K. and Balda, M.S. (2003) Signalling to and from tight junctions. Nat. Rev. Mol. Cell Biol., 4, 225-236. https://doi.org/10.1038/nrm1055
- Hawkins, B.T. and Davis, T.P. (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol. Rev., 57, 173-185. https://doi.org/10.1124/pr.57.2.4
- Oldendorf, W.H., Cornford, M.E. and Brown, W.J. (1977) The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann. Neurol., 1, 409-417. https://doi.org/10.1002/ana.410010502
- del Zoppo, G.J. and Mabuchi, T. (2003) Cerebral microvessel responses to focal ischemia. J. Cereb. Blood Flow Metab., 23, 879-894. https://doi.org/10.1097/01.WCB.0000078322.96027.78
- Petty, M.A. and Wettstein, J.G. (2001) Elements of cerebral microvascular ischaemia. Brain Res. Brain Res. Rev., 36, 23-34. https://doi.org/10.1016/S0165-0173(01)00062-5
- Mark, K.S. and Davis, T.P. (2002) Cerebral microvascular changes in permeability and tight junctions induced by hypoxia-reoxygenation. Am. J. Physiol. Heart Circ. Physiol., 282, H1485-H1494. https://doi.org/10.1152/ajpheart.00645.2001
- Denes, A., Ferenczi, S. and Kovacs, K.J. (2011) Systemic inflammatory challenges compromise survival after experimental stroke via augmenting brain inflammation, bloodbrain barrier damage and brain oedema independently of infarct size. J. Neuroinflammation, 8, 164. https://doi.org/10.1186/1742-2094-8-164
- Kahles, T., Luedike, P., Endres, M., Galla, H.J., Steinmetz, H., Busse, R., Neumann-Haefelin, T. and Brandes, R.P. (2007) NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke, 38, 3000-3006. https://doi.org/10.1161/STROKEAHA.107.489765
- Belayev, L., Busto, R., Zhao, W. and Ginsberg, M.D. (1996) Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats. Brain Res., 739, 88-96. https://doi.org/10.1016/S0006-8993(96)00815-3
- Strbian, D., Durukan, A., Pitkonen, M., Marinkovic, I., Tatlisumak, E., Pedrono, E., Abo-Ramadan, U. and Tatlisumak, T. (2008) The blood-brain barrier is continuously open for several weeks following transient focal cerebral ischemia. Neuroscience, 153, 175-181. https://doi.org/10.1016/j.neuroscience.2008.02.012
- Abo-Ramadan, U., Durukan, A., Pitkonen, M., Marinkovic, I., Tatlisumak, E., Pedrono, E., Soinne, L., Strbian, D. and Tatlisumak, T. (2009) Post-ischemic leakiness of the bloodbrain barrier: a quantitative and systematic assessment by Patlak plots. Exp. Neurol., 219, 328-333. https://doi.org/10.1016/j.expneurol.2009.06.002
- Sandoval, K.E. and Witt, K.A. (2008) Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol. Dis., 32, 200-219. https://doi.org/10.1016/j.nbd.2008.08.005
- Rosenberg, G.A., Estrada, E.Y. and Dencoff, J.E. (1998) Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke, 29, 2189-2195. https://doi.org/10.1161/01.STR.29.10.2189
- Ramos-Fernandez, M., Bellolio, M.F. and Stead, L.G. (2011) Matrix metalloproteinase-9 as a marker for acute ischemic stroke: a systematic review. J. Stroke Cerebrovasc. Dis., 20, 47-54. https://doi.org/10.1016/j.jstrokecerebrovasdis.2009.10.008
- Cunningham, L.A., Wetzel, M. and Rosenberg, G.A. (2005) Multiple roles for MMPs and TIMPs in cerebral ischemia. Glial, 50, 329-339. https://doi.org/10.1002/glia.20169
- Koto, T., Takubo, K., Ishida, S., Shinoda, H., Inoue, M., Tsubota, K., Okada, Y. and Ikeda, E. (2007) Hypoxia disrupts the barrier function of neural blood vessels through changes in the expression of claudin-5 in endothelial cells. Am. J. Pathol., 170, 1389-1397. https://doi.org/10.2353/ajpath.2007.060693
- Song, L., Ge, S. and Pachter, J.S. (2007) Caveolin-1 regulates expression of junction-associated proteins in brain microvascular endothelial cells. Blood, 109, 1515-1523. https://doi.org/10.1182/blood-2006-07-034009
- Liu, J., Jin, X., Liu, K.J. and Liu, W. (2012) Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage. J. Neurosci., 32, 3044-3057. https://doi.org/10.1523/JNEUROSCI.6409-11.2012
- Fischer, S., Wobben, M., Marti, H.H., Renz, D. and Schaper, W. (2002) Hypoxia-induced hyperpermeability in brain microvessel endothelial cells involves VEGF-mediated changes in the expression of zonula occludens-1. Microvasc. Res., 63, 70-80. https://doi.org/10.1006/mvre.2001.2367
- Andras, I.E., Deli, M.A., Veszelka, S., Hayashi, K., Hennig, B. and Toborek, M. (2007) The NMDA and AMPA/KA receptors are involved in glutamate-induced alterations of occludin expression and phosphorylation in brain endothelial cells. J. Cereb. Blood Flow Metab., 27, 1431-1443. https://doi.org/10.1038/sj.jcbfm.9600445
- Zlokovic, B.V. (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron, 57, 178-201. https://doi.org/10.1016/j.neuron.2008.01.003
- Gasche, Y., Copin, J.C., Sugawara, T., Fujimura, M. and Chan, P.H. (2001) Matrix metalloproteinase inhibition prevents oxidative stress-associated blood-brain barrier disruption after transient focal cerebral ischemia. J. Cereb. Blood Flow Metab., 21, 1393-1400. https://doi.org/10.1097/00004647-200112000-00003
- Heo, J.H., Han, S.W. and Lee, S.K. (2005) Free radicals as triggers of brain edema formation after stroke. Free Radical Biol. Med., 39, 51-70. https://doi.org/10.1016/j.freeradbiomed.2005.03.035
- Rosenberg, G.A. and Yang, Y. (2007) Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cere bral ischemia. Neurosurg. Focus, 22, E4.
- Kastrup, A., Groschel, K., Ringer, T.M., Redecker, C., Cordesmeyer, R., Witte, O.W. and Terborg, C. (2008) Early disruption of the blood-brain barrier after thrombolytic therapy predicts hemorrhage in patients with acute stroke. Stroke, 39, 2385-2387. https://doi.org/10.1161/STROKEAHA.107.505420
- Krysl, D., Deykun, K., Lambert, L., Pokorny, J. and Mares, J. (2012) Perifocal and remote blood-brain barrier disruption in cortical photothrombotic ischemic lesion and its modulation by the choice of anesthesia. J. Physiol. Pharmacol., 63, 127-132.
- Fagan, S.C., Hess, D.C., Hohnadel, E.J., Pollock, D.M. and Ergul, A. (2004) Targets for vascular protection after acute ischemic stroke. Stroke, 35, 2220-2225. https://doi.org/10.1161/01.STR.0000138023.60272.9e
- Ivens, S., Kaufer, D., Flores, L.P., Bechmann, I., Zumsteg, D., Tomkins, O., Seiffert, E., Heinemann, U. and Friedman, A. (2007) TGF-beta receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain, 130, 535-547. https://doi.org/10.1093/brain/awl317
- Seiffert, E., Dreier, J.P., Ivens, S., Bechmann, I., Tomkins, O., Heinemann, U. and Friedman, A. (2004) Lasting blood-brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J. Neurosci., 24, 7829-7836. https://doi.org/10.1523/JNEUROSCI.1751-04.2004
- Bernal-Pacheco, O. and Roman, G.C. (2007) Environmental vascular risk factors: new perspectives for stroke prevention. J. Neurol. Sci., 262, 60-70. https://doi.org/10.1016/j.jns.2007.06.026
- Mateen, F.J. and Brook, R.D. (2011) Air pollution as an emerging global risk factor for stroke. JAMA, 305, 1240-1241. https://doi.org/10.1001/jama.2011.352
- Kromhout, D. (1988) Blood lead and coronary heart disease risk among elderly men in Zutphen, The Netherlands. Environ. Health Perspect., 78, 43-46. https://doi.org/10.1289/ehp.887843
- Elliott, P., Arnold, R., Cockings, S., Eaton, N., Jarup, L., Jones, J., Quinn, M., Rosato, M., Thornton, I., Toledano, M., Tristan, E. and Wakefield, J. (2000) Risk of mortality, cancer incidence, and stroke in a population potentially exposed to cadmium. Occup. Environ. Med., 57, 94-97. https://doi.org/10.1136/oem.57.2.94
- Moller, L. and Kristensen, T.S. (1992) Blood lead as a cardiovascular risk factor. Am. J. Epidemiol., 136, 1091-1100. https://doi.org/10.1093/oxfordjournals.aje.a116574
- Schober, S.E., Mirel, L.B., Graubard, B.I., Brody, D.J. and Flegal, K.M. (2006) Blood lead levels and death from all causes, cardiovascular disease, and cancer: results from the NHANES III mortality study. Environ. Health Perspect., 114, 1538-1541.
- Navas-Acien, A., Selvin, E., Sharrett, A.R., Calderon-Aranda, E., Silbergeld, E. and Guallar, E. (2004) Lead, cadmium, smoking, and increased risk of peripheral arterial disease. Circulation, 109, 3196-3201. https://doi.org/10.1161/01.CIR.0000130848.18636.B2
- Menke, A., Muntner, P., Batuman, V., Silbergeld, E.K. and Guallar, E. (2006) Blood lead below 0.48 micromol/L (10 microg/dL) and mortality among US adults. Circulation, 114, 1388-1394. https://doi.org/10.1161/CIRCULATIONAHA.106.628321
- Lustberg, M. and Silbergeld, E. (2002) Blood lead levels and mortality. Arch. Intern. Med., 162, 2443-2449. https://doi.org/10.1001/archinte.162.21.2443
- Peters, J.L., Perlstein, T.S., Perry, M.J., Mcneely, E. and Weuve, J. (2010) Cadmium exposure in association with history of stroke and heart failure. Environ. Res., 110, 199-206. https://doi.org/10.1016/j.envres.2009.12.004
- Garcia Gomez, M., Boffetta, P., Caballero Klink, J.D., Espanol, S. and Gomez Quintana, J. (2007) [Cardiovascular mortality in mercury miners]. Med. Clin. (Barcelona), 128, 766-771. https://doi.org/10.1157/13106327
- Lisabeth, L.D., Ahn, H.J., Chen, J.J., Sealy-Jefferson, S., Burke, J.F. and Meliker, J.R. (2010) Arsenic in drinking water and stroke hospitalizations in Michigan. Stroke, 41, 2499-2504. https://doi.org/10.1161/STROKEAHA.110.585281
- Chiou, H.Y., Huang, W.I., Su, C.L., Chang, S.F., Hsu, Y.H. and Chen, C.J. (1997) Dose-response relationship between prevalence of cerebrovascular disease and ingested inorganic arsenic. Stroke, 28, 1717-1723. https://doi.org/10.1161/01.STR.28.9.1717
- Dietrich, W.D., Alonso, O. and Busto, R. (1993) Moderate hyperglycemia worsens acute blood-brain barrier injury after forebrain ischemia in rats. Stroke, 24, 111-116. https://doi.org/10.1161/01.STR.24.1.111
- Chi, O.Z., Hunter, C., Liu, X. and Weiss, H.R. (2009) Effects of exogenous excitatory amino acid neurotransmitters on blood-brain barrier disruption in focal cerebral ischemia. Neurochem. Res., 34, 1249-1254. https://doi.org/10.1007/s11064-008-9902-7
- Zheng, W., Aschner, M. and Ghersi-Egea, J.F. (2003) Brain barrier systems: a new frontier in metal neurotoxicological research. Toxicol. Appl. Pharmacol., 192, 1-11. https://doi.org/10.1016/S0041-008X(03)00251-5
- Goldstein, G.W., Asbury, A.K. and Diamond, I. (1974) Pathogenesis of lead encephalopathy. Uptake of lead and reaction of brain capillaries. Arch. Neurol., 31, 382-389. https://doi.org/10.1001/archneur.1974.00490420048005
- Struzynska, L., Walski, M., Gadamski, R., Dabrowska-Bouta, B. and Rafalowska, U. (1997) Lead-induced abnormalities in blood-brain barrier permeability in experimental chronic toxicity. Mol. Chem. Neuropathol., 31, 207-224. https://doi.org/10.1007/BF02815125
- Toews, A.D., Kolber, A., Hayward, J., Krigman, M.R. and Morell, P. (1978) Experimental lead encephalopathy in the suckling rat: concentration of lead in cellular fractions enriched in brain capillaries. Brain Res., 147, 131-138. https://doi.org/10.1016/0006-8993(78)90777-1
- Dyatlov, V.A., Platoshin, A.V., Lawrence, D.A. and Carpenter, D.O. (1998) Lead potentiates cytokine- and glutamatemediated increases in permeability of the blood-brain barrier. Neurotoxicology, 19, 283-291.
- Shukla, A., Shukla, G.S. and Srimal, R.C. (1996) Cadmiuminduced alterations in blood-brain barrier permeability and its possible correlation with decreased microvessel antioxidant potential in rat. Hum. Exp. Toxicol., 15, 400-405. https://doi.org/10.1177/096032719601500507
- Jung, Y.S., Jeong, E.M., Park, E.K., Kim, Y.M., Sohn, S., Lee, S.H., Baik, E.J. and Moon, C.H. (2008) Cadmium induces apoptotic cell death through p38 MAPK in brain microvessel endothelial cells. Eur. J. Pharmacol., 578, 11-18. https://doi.org/10.1016/j.ejphar.2007.08.049
- Jeong, E.M., Moon, C.H., Kim, C.S., Lee, S.H., Baik, E.J., Moon, C.K. and Jung, Y.S. (2004) Cadmium stimulates the expression of ICAM-1 via NF-kappaB activation in cerebrovascular endothelial cells. Biochem. Biophys. Res. Commun., 320, 887-892. https://doi.org/10.1016/j.bbrc.2004.05.218
- Clarkson, T.W. (1993) Mercury: major issues in environmental health. Environ. Health Perspect., 100, 31-38. https://doi.org/10.1289/ehp.9310031
- Peterson, E.W. and Cardoso, E.R. (1983) The blood-brain barrier following experimental subarachnoid hemorrhage. Part 2: Response to mercuric chloride infusion. J. Neurosurg., 58, 345-351. https://doi.org/10.3171/jns.1983.58.3.0345
- Chiou, J.M., Wang, S.L., Chen, C.J., Deng, C.R., Lin, W. and Tai, T.Y. (2005) Arsenic ingestion and increased microvascular disease risk: observations from the south-western arseniasis-endemic area in Taiwan. Int. J. Epidemiol., 34, 936-943. https://doi.org/10.1093/ije/dyi108
- Chen, S.C., Tsai, M.H., Wang, H.J., Yu, H.S. and Chang, L.W. (2004) Vascular permeability alterations induced by arsenic. Hum. Exp. Toxicol., 23, 1-7. https://doi.org/10.1191/0960327104ht407oa
- Reyes, J.L., Molina-Jijon, E., Rodriguez-Munoz, R., Bautista-Garcia, P., Debray-Garcia, Y. and Namorado Mdel, C. (2013) Tight junction proteins and oxidative stress in heavy metalsinduced nephrotoxicity. Biomed. Res. Int., 2013, 730789.
- Wong, E.W. and Cheng, C.Y. (2011) Impacts of environmental toxicants on male reproductive dysfunction. Trends Pharmacol. Sci., 32, 290-299. https://doi.org/10.1016/j.tips.2011.01.001
Cited by
- Impact of commercial cigarette smoke condensate on brain tissue co-cultured with astrocytes and blood–brain barrier endothelial cells vol.80, pp.10-12, 2017, https://doi.org/10.1080/15287394.2017.1355863
- Role of Autophagy in Endothelial Damage and Blood–Brain Barrier Disruption in Ischemic Stroke vol.49, pp.6, 2018, https://doi.org/10.1161/STROKEAHA.117.017287
- Chronic Oral Arsenic Exposure and Its Correlation with Serum S100B Concentration pp.1559-0720, 2019, https://doi.org/10.1007/s12011-018-1463-2
- Association between heavy metal levels and acute ischemic stroke vol.25, pp.1, 2018, https://doi.org/10.1186/s12929-018-0446-0