• 제목/요약/키워드: Blood vessel

검색결과 761건 처리시간 0.029초

Blood Vessel Enhancement by Directed Diffusion

  • Intajag, S.;Tipsuwanporn, V.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.101-106
    • /
    • 2004
  • In this paper, a blood vessel in an angiographic image, which plays an importance role in the diagnose diseases including in the eyes, brain and heart, is enhanced by using a directed diffusion technique. A fundamental component of the angiographic analysis is vessel segmentation that the proposed method provides a preprocessing of the image into a form suitable for human analysis, or more importantly, for machine analysis such the segmentation. Vessel enhancement is a challenging problem due to the complex nature of vascular trees and to imaging imperfections. Some parts of the inherent imperfections in angiography are the intensity inhomogeneity between the larger and smaller vessels, and another imperfection is the leakage of contrast agent into the background tissue that provides to low contrast between vessels and tissue. In the proposed scheme, the directed diffusion solves the problem by formulating a local geometric structure, which consists of direction and scale of the blood vessels. The diffusion process uses the local structure to enhance by a diffusivity tensor. The proposed algorithm can be applied to maintain sharpness and coherence-smooth the intra-regions into homogeneity better than traditional diffusion methods, which are Gaussian regulation and coherence enhancing diffusion.

  • PDF

혈관 윤곽의 자동적 식별을 위한 방향성 기반의 적응적 추적 알고리즘 (Adaptive Tracking Algorithm Based on Direction Field for Automated Identification of Vessel Contour)

  • 박석일;이종실;구자일;홍승홍
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 춘계학술대회
    • /
    • pp.414-417
    • /
    • 1997
  • This paper presents vessel contour for extracting features and segmentating narrow blood vessels down to a diameter of two pixels in digital subtraction angiographic image. We present a new tracking algorithm for contour, mainly blood vessels in DSA image, and extracting properties such as their intensities, diameters, and center lines by exploiting spatial continuity. The proposed algorithm comes to detect blood vessel's boundary using difference edge detector one of homogeneity operator and find a next centerline position by direction vector of edge information. This algorithm enhanced variation of vessel's diameter compared to Sun's tracking algorithm and lessoned to compute as direction vector decide adaptively entire vessel's direction field. The processed images are intended to support radiologists in diagnosis, radiation therapy planning, and surgical planning. The algorithm should be useful for automating angiographic analyses of blood vessels.

  • PDF

Fluid-structure interactions of physiological flow in stenosed artery

  • Buriev, Bahtiyor;Kim, Tae-Dong;Seo, Tae-Won
    • Korea-Australia Rheology Journal
    • /
    • 제21권1호
    • /
    • pp.39-46
    • /
    • 2009
  • Atherosclerosis is a disease that narrows, thickens, hardens, and restructures a blood vessel due to substantial plaque deposit. The geometric models of the considered stenotic blood flow are three different types of constriction of cross-sectional area of blood vessel; 25%, 50%, and 75% of constriction. The computational model with the fluid-structure interaction is introduced to investigate the wall shear stresses, blood flow field and recirculation zone in the stenotic vessels. The velocity profile in a compliant stenotic artery with various constrictions is subjected to prescribed physiologic waveform. The computational simulations were performed, in which the physiological flow through a compliant axisymmetric stenotic blood vessel was solved using commercial software ADINA 8.4 developed by finite element method. We demonstrated comparisons of the wall shear stress with or without the fluid-structure interaction and their velocity profiles under the physiological flow condition in the compliant stenotic artery. The present results enhance our understanding of the hemodynamic characteristics in a compliant stenotic artery.

합성제어기를 이용한 혈압 시뮬레이터의 구현 (Blood pressure simulator using hybrid controller)

  • 김철한;사공건;남기곤;전계록
    • 센서학회지
    • /
    • 제16권1호
    • /
    • pp.44-51
    • /
    • 2007
  • A hybridized simulator for generating blood pressure waveform is proposed to study the remedy and/or evaluation of the conventional sphygmomanometer utilizing the oscillometric method which is widely applied. The blood pressure of a flowing fluid was controlled for the blood vessel's condition caused by a rhythmical and periodical contraction/relaxation because of the special excitatory and conductive system of the heart. In this study, a hybridized controller composed of the PI feedback controller and the feedforward controller. The inverse dynamics function is proposed to operating the control valve while the pressure is applied in an oil pressure tank. The proposed hybrid simulator reproducing the blood pressure waveform in an artificial blood vessel has kept the control performance consistent over all range. Based on these results, the proposed simulators could be applied to the development and compensation of the non invasive sphygmomanometer type as well as to study the characteristics of the blood pressure and blood vessel.

Automatic Segmentation of Retinal Blood Vessels Based on Improved Multiscale Line Detection

  • Hou, Yanli
    • Journal of Computing Science and Engineering
    • /
    • 제8권2호
    • /
    • pp.119-128
    • /
    • 2014
  • The appearance of retinal blood vessels is an important diagnostic indicator of serious disease, such as hypertension, diabetes, cardiovascular disease, and stroke. Automatic segmentation of the retinal vasculature is a primary step towards automatic assessment of the retinal blood vessel features. This paper presents an automated method for the enhancement and segmentation of blood vessels in fundus images. To decrease the influence of the optic disk, and emphasize the vessels for each retinal image, a multidirectional morphological top-hat transform with rotating structuring elements is first applied to the background homogenized retinal image. Then, an improved multiscale line detector is presented to produce a vessel response image, and yield the retinal blood vessel tree for each retinal image. Since different line detectors at varying scales have different line responses in the multiscale detector, the line detectors with longer length produce more vessel responses than the ones with shorter length; the improved multiscale detector combines all the responses at different scales by setting different weights for each scale. The methodology is evaluated on two publicly available databases, DRIVE and STARE. Experimental results demonstrate an excellent performance that approximates the average accuracy of a human observer. Moreover, the method is simple, fast, and robust to noise, so it is suitable for being integrated into a computer-assisted diagnostic system for ophthalmic disorders.

정상 및 박동성 혈류의 전단응력분포에 관한 연구 (A Study on the Shear Stress Distribution of the Steady and Physiological Blood Flows)

  • 서상호;유상신;노형운;심준완
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1995년도 춘계학술대회
    • /
    • pp.113-116
    • /
    • 1995
  • Steady and physiological flows of a Newtonian fluid and blood in the bifurcated arterial vessel are numerically simulated. Distributions of velocity, pressure and wall shear stress in the bifurcated arterial vessel are calculated to investigate the differences between steady and physiological flows. For the given Reynolds number physiological flow characteristics of a Newtonian fluid and blood in the bifurcated arterial vessel are quite different from those of steady flows. No flow separation or flow reversal in the bifurcated region in the downstream after stenosis appears during the acceleration phase. Also, no recirculation region is seen for steady flows. However, during the deceleration phase the flow began to exhibit flow reversal, which is eventually extended to the entire wall region.

  • PDF

당뇨병환자와 정상인의 말초혈관혈류의 비선형적 운동계 분석에 대한 연구 (A Study of the Analysis of Characteristics of Nonlinear Dynamic System on Blood-Flow of Peripheral Blood-Vessel between Diabetic Patients and Control Subjects)

  • 김덕훈;최준영;이상훈;고한우;남상희
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1996년도 추계학술대회
    • /
    • pp.363-367
    • /
    • 1996
  • In general, the physiological systems have shown nonlinear complex phenomena. This study analyzes nonlinear characteristics of the flow of peripheral blood vessel dynamics in physiological systems using chaos theory. We performed this study by means of several quantity methods and power spectrum. The quantity methods are a phase space reconstruction and a poincare's map. And the power spectrum method is a conventional linear analysis. Experimental data have been acquired from examining 10 diabetic patients, and 10 control subjects in initial stable state. In acquisition experminetal data, we anlysized the differences of nonlinear characteristics between diabetic group and control group. The results of quality analysis methods showed the flow of peripheral blood vessel had the nonlinear and chaotic characteristics, screening a strange attractor on reconstructed phase space. In conclusion, the flow dynamics of peripheral blood vessel had a chaotic behavior of nonlinear dynamic systems, dynamic system, and differences of characteristic of nonlinear dynamic system.

  • PDF

협착 동맥혈관의 혈류유동 모델링 (Modeling of Hemodynamics in Stenosed Artery)

  • 김성종;박영란;김상진;강형섭;김진상;오성훈;강성준;김기범
    • 한국산학기술학회논문지
    • /
    • 제13권5호
    • /
    • pp.2285-2290
    • /
    • 2012
  • 동맥경화는 혈관 안에서 콜레스테롤의 침착 때문에 혈관이 좁아지거나, 딱딱해 지거나, 두꺼워 지게 되는데, 이런 현상이 심해지게 되면 동맥은 단단해져서 혈액이 원활히 통과하지 못하게 되고 심하면 사망 까지 이르게 되는 것이다. 본 연구에서는 복대동맥에서의 동맥경화가 진행되는 것을 탄성 혈관 일 때와 강성 혈관 일 때 각각 협착률이 혈관 직경의 20과 45%로 설정하고 속도와 압력 변화를 살펴보기 위하여 유한 요소 해석을 이용하여 모델링을 하였다. 혈관이 탄성 혈관일 때 속도와 압력 값은 협착률이 혈관 직경의 20%일 때 보다 45%일 때 더 높게 나타났으며, 강성 혈관에서 속도와 압력 값은 협착률이 혈관 직경의 20%일 때보다 45%에서 더 높았다. 협착률이 혈관 직경의 20과 45%인 탄성 혈관에서 재순환영역이 나타났다. 본 연구결과 혈관 협착에 따른 혈류역학적 특징을 이해하는데 도움이 될 것으로 판단된다.

협착된 경동맥 내의 벽전단응력 및 혈관의 탄성적 거동 (Elastic Motion of the Blood Vessel and Wall Shear Stress in Carotid Artery with Stenosis)

  • 김창녕;오택열;최명진;정삼두
    • 한국정밀공학회지
    • /
    • 제22권9호
    • /
    • pp.179-187
    • /
    • 2005
  • The characteristics of blood flow and the interaction between the blood vessel and blood flow play important roles in plaque cap rupture and the growth of atherosclerosis which may lead directly to a heart attack or a stroke. In this study, carotid arteries with different stenoses have been numerically simulated to investigate the wall shear stress(WSS) and the elastic motion of the vessel. Blood flow has been treated as physiological, laminar and incompressible flow. To model the shear thining behavior of the blood, the Carreau-Yasuda model has been employed but the viscoelasticity of blood has not been considered. The results show that the WSS of $severe(75\%)$ stenosis is much higher than those of $25\%\;and\;50\%$ stenosis in the region of stenosis. With the increase in the stenosis thickness, the expansion ratio of the center of the stenosis decreases while the expansion ratio of the upstream region of the stenosis increases.

Correlation of Peak Time Shift in Blood Pressure Waveform and PPG Based on Compliance Change Analysis in RLC Windkessel Model

  • Choi, Wonsuk;Cho, Jin-Ho
    • Current Optics and Photonics
    • /
    • 제1권5호
    • /
    • pp.529-537
    • /
    • 2017
  • We explored how changes in blood vessel compliance affected the systolic rise time (SRT) of the maximum blood pressure (BP) peak wave and the diastolic fall time (DFT) of the minimal BP peak wave, compared to photoplethysmograpic (PPG) parameters, using a two-compartment, second-order, arterial Windkessel model. We employed earlier two-compartment Windkessel models and the components thereof to construct equivalent blood vessel circuits, and reproduced BP waveforms using PSpice technology. The SRT and DFT values were obtained via circuit simulation, considering variations in compliance (the dominant influence on blood vessel parameters attributable to BP changes). And then performed regression analysis to identify how compliance affected the SRT and DFT. We compared the SRTs and DFTs of BP waves to the PPG values by reference to BP changes in each subject. We confirmed that the time-shift propensities of BP waves and the PPG data were highly consistent. However, the time shifts differed significantly among subjects. These simulation and experimental results allowed us to construct an initial trend curve of individual BP peak time (measured via wrist PPG evaluations at three arm positions) that facilitated accurate individual BP estimations.