• Title/Summary/Keyword: Blood sealing

Search Result 18, Processing Time 0.025 seconds

A Study of Magnetic Fluid Seals for Blood Sealing

  • Tomioka, Jun;Fukaishi, Akira;Ohba, Takashi
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.373-374
    • /
    • 2002
  • Magnetic fluid seals are used in a wide variety of gas and dust sealing applications. However, it is difficult to seal for liquid because of its characteristic. This study will be a basic guide for a magnetic fluid seal for liquid, especially for blood to be practically used in medical instruments such as rotary blood pumps by clarifying its seal properties. Sealing pressure test, durability test, and hemolysis test have been conducted for this seal. In this study, magnetic fluid, sealing fluid, eccentricity ratio, revolution speed were selected as parameters. As results of the tests, it has been found that the properties of magnetic fluid seal depend on the solvent and the saturation magnetization of magnetic fluid. Therefore, the selection of magnetic fluid is important for this seal. It also has been found that eccentricity ratio of the shaft caused harmful effect for seal properties. In conclusion, it has been showed that magnetic fluid seals could be possibly used in medical instruments such as blood pumps when blood come in contact with magnetic fluids.

  • PDF

Histologic Evaluation of Blood Vessels Sealed with 1,470-nm Diode Laser: Determination of Adequate Condition for Laser Vessel Sealing

  • Im, Nu-Ri;Moon, Jungho;Choi, Wonshik;Kim, Byoungjae;Lee, Jung Joo;Kim, Heejin;Baek, Seung-Kuk
    • Medical Lasers
    • /
    • v.7 no.1
    • /
    • pp.6-12
    • /
    • 2018
  • Introduction Energy-based devices allow for a more rapid and efficient ligation of blood vessels during operations. In the present study, we evaluated the feasibility of a laser as an alternative energy source for the vessel sealing system and determined the optimal condition of laser for an effective vessel sealing through histologic examination. Materials and Methods The arteries (5 mm diameter) harvested from porcine legs were compressed between two glass-slides to eliminate its luminal space and were irradiated with 1,470-nm diode laser under various sealing conditions, including laser power (5-30 W), irradiation time (5 or 10 seconds), and focus mode (focus or defocus). Subsequently, the irradiated vessels were fixed in 4% formaldehyde and then processed to paraffin block. The paraffinized sample was sectioned and stained with hematoxylin and eosin for histological evaluation. Results The extent of tissue change was positively correlated with duration and power of laser. In defocus mode, the irradiated vessels showed sufficient tissue denaturation for sealing effect without severe tissue destruction. Moreover, among the various conditions of irradiation, laser power between 15 and 20 W, as well as exposure time of 5 seconds were appropriate for sealing the blood vessels. Conclusion Adequate power and irradiation duration of laser can render blood vessels to be sealed effectively, although the higher power of laser may be required to cut the vessels.

Characteristics of the Sealing Pressure of a Magnetic Fluid Shaft Seal for Intra-Cardiac Axial Flow Blood Pumps (심장 내 이식형 축류 혈액 펌프용 자성 유체 축봉의 내압 특성)

  • KIM, Dong-Wook;Mitamura , Yoshinori
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.10
    • /
    • pp.477-482
    • /
    • 2002
  • One of the key technologic requirements for rotary blood pumps is the sealing of the motor shaft. A mechanical seal, a journal bearing, magnetic coupling, and magnetic suspension have been developed, but they have drawbacks such as wear, thrombus formation, and power consumption. A magnetic fluid seal is durable, simple, and non power consumptive. Long-term experiments confirmed these advantages. The seal body was composed of a Nd-Fe-B magnet and two pole pieces; the seal was formed by injecting magnetic fluid into the gap (50${\mu}m$) between the pole pieces and the motor shaft. To contain the ferro-fluid in the seal and to minimize the possibility of magnetic fluid making contact with blood, a shield with a small cavity was attached to the pole piece. While submerged in blood, the sealing pressure of the seal was measured and found to be 31kPa with magnetic fluid LS-40 (saturated magnetization, 24.3 KA/m) at a motor speed of 10,000 rpm and 53kPa under static conditions(0mmHg). The specially designed magnetic fluid seal for keeping liquids out is useful for axial flow blood pumps. The magnetic fluid seal was incorporated into an intra-cardiac axial flow blood pump.

Solanum Nigrum Polysaccharide (SNL) Extract Effects in Transplanted Tumor-bearing Mice - Erythrocyte Membrane Fluidity and Blocking of Functions

  • Yuan, Hong-Liang;Liu, Xiao-Lei;Liu, Ying-Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10469-10473
    • /
    • 2015
  • Background: Solanum nigrum L. has been used in traditional Chinese medicine because of its diuretic and antipyretic effects. The present research concerned effects of crude polysaccharides isolated from Solanum nigrum L. on erythrocyte membranes of tumor-bearing $S_{180}$ and $H_{22}$ in mice. Materials and Methods: Fluorescence-labeled red blood cell membranes were used with DPH fluorescence spectrophotometry to examine erythrocyte membrane fluidity, and colorimetry to determine degree of erythrocyte surface membrane blocking. Extent of reaction by tumor-bearing mice with the enzyme erythrocyte membrane bubble shadow detection of red cell membrane variation in the degree of closure before and after administration. Results: Solanum nigrum polysaccharide could significantly improve the $S_{180}$ and $H_{22}$ tumor-bearing mice erythrocyte membrane fluidity, compared with the control group, the difference was significant (p<0.01), SNL can significantly improve the red blood cell membrane and then $S_{180}$ tumor-bearing mice sealing ability, compared with the negative control group, the difference was significant(p<0.05, p<0.01). $H_{22}$ tumor-bearing mice can increase red cell membrane and then sealing ability, the difference was significant (p<0.05). Solanum nigrum polysaccharide degree of fluidity and blocking two transplanted tumors in mice restored the ability to raise the red cell membrane has a significant effect. Conclusions: Solanum nigrum L.-type mice transplanted tumor can affect the red blood cell membrane fluidity and re-closed, through the red cell membrane of red blood cells to enhance the immune function of the possibility of erythrocyte immunity against tumor formation garland provide experimental basis.

A Study of in-vitro Performances of the Intracardiac Axial Flow Pump (심장내 이식형 축류 혈액펌프의 in-vitro특성에 관한 연구)

  • 김동욱;삼전부호희
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.33-38
    • /
    • 1998
  • The intracardiac axial flow pump has been developed This device has several advantages: it fits well anatomically, its blood-contacting surface is small, and it is implanted as easily as an artificial heart valve replacement. The axial flow pump consists of an impeller and a motor, both of which are encased in a housing. Two types of impeller with 4 vanes and 6 vanes are used. Sealing of the motor shaft is achieved by means of a ferrofluidic seal. A flow of 5$\ell$/min was obtained at a differential pressure of 100mmHg with a motor speed of 7091rpm with the 4-vane impeller and 6402rpm with the 6-vane impeller. Sealing was kept against a pressure of 150mmHg at 7000rpm with the 4-vane impeller and 6402rpm with the 6-vane impeller. Sealing was kept against a pressure of 150mmHg at 7000rpm over 24 hours. The index of hemolysis was 0.056 with the 4-vane impeller and 0.214 with the 6-vane impeller. The intracardiac axial flow pump is a very promising circulatory support.

  • PDF

Coronal tooth discoloration induced by regenerative endodontic treatment using different scaffolds and intracanal coronal barriers: a 6-month ex vivo study

  • Shokouhinejad, Noushin;Razmi, Hassan;Farbod, Maryam;Alikhasi, Marzieh;Camilleri, Josette
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.3
    • /
    • pp.25.1-25.10
    • /
    • 2019
  • Objective: The aim of this study was to evaluate discoloration of teeth undergoing regenerative endodontic procedures (REPs) using blood clot or platelet-rich fibrin (PRF) as the scaffolds and different calcium silicate-based materials as the intracanal coronal barriers in an ex vivo model. Materials and Methods: Forty-eight bovine incisors were prepared and disinfected using 1 mg/mL double antibiotic paste (DAP). The specimens were then randomly divided into 2 groups (n = 24) according to the scaffolds (blood or PRF). After placement of scaffolds each group was divided into 2 subgroups (n = 12) according to the intracanal coronal barriers (ProRoot MTA or Biodentine). The pulp chamber walls were sealed with dentin bonding agent before placement of DAP and before placement of scaffolds. The color changes (${\Delta}E$) were measured at different steps. The data were analyzed using 2-way analysis of variance. Results: Coronal discoloration induced by DAP was not clinically perceptible (${\Delta}E{\leq}3.3$). Regarding the type of the scaffold, coronal discoloration was significantly higher in blood groups compared with PRF groups at the end of REP and after 1 month (p < 0.05). However, no significant difference was found between PRF and blood clot after 6 months (p > 0.05). Considering the type of intracanal coronal barrier, no significant difference existed between ProRoot MTA and Biodentine (p > 0.05). Conclusions: With sealing the dentinal tubules of pulp chamber with a dentin bonding agent and application of DAP as an intracanal medicament, coronal color change of the teeth following the use of PRF and blood sealed with either ProRoot MTA or Biodentine was not different at 6-month follow-up.

The Myths and Facts of MTA (MTA의 Myths & Facts)

  • Ko, Hyun-Jung
    • The Journal of the Korean dental association
    • /
    • v.48 no.11
    • /
    • pp.813-818
    • /
    • 2010
  • Since MTA has many beneficial properties such as biocompatibility, great sealing capacity, antibacterial effects, low cytotoxicity, and stimulation of formation of mineralized tissue, it has been widely used as the material of choice in root-end filling, apexification, pulpotomy, perforation repair and so on. However, despite its favorable characteristics, MTA presents working properties which are less than ideal. The resulting cement from the mixing of powder and water is difficult to manipulate, and its setting time has been reported to be 2 h 45 min whereas the working time is <4 minutes. Additional moisture is also required to activate the setting of the cement. Moreover, according to recent studies, the physical properties of MT A may be hampered by acidic environment or blood contamination. Therefore, practitioners may have surprisingly worse results than they expected when they are not fully acquainted with the characteristics and manipulation method of MTA.

Chemical characteristics of mineral trioxide aggregate and its hydration reaction

  • Chang, Seok-Woo
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.4
    • /
    • pp.188-193
    • /
    • 2012
  • Mineral trioxide aggregate (MTA) was developed in early 1990s and has been successfully used for root perforation repair, root end filling, and one-visit apexification. MTA is composed mainly of tricalcium silicate and dicalcium silicate. When MTA is hydrated, calcium silicate hydrate (CSH) and calcium hydroxide is formed. Formed calcium hydroxide interacts with the phosphate ion in body fluid and form amorphous calcium phosphate (ACP) which finally transforms into calcium deficient hydroxyapatite (CDHA). These mineral precipitate were reported to form the MTA-dentin interfacial layer which enhances the sealing ability of MTA. Clinically, the use of zinc oxide euginol (ZOE) based materials may retard the setting of MTA. Also, the use of acids or contact with excessive blood should be avoided before complete set of MTA, because these conditions could adversely affect the hydration reaction of MTA. Further studies on the chemical nature of MTA hydration reaction are needed.

Socket sealing using pedicle subepithelial connective tissue graft with tunneling in maxillary esthetic zone: Case reports

  • Bae, Ju-Eun;Kim, Yong-Gun;Park, Jin-Woo;Lee, Jae-Mok;Suh, Jo-Young
    • Oral Biology Research
    • /
    • v.42 no.4
    • /
    • pp.254-261
    • /
    • 2018
  • Reports have it that horizontal and vertical loss of the ridge happens during 6 months after tooth extraction. So valuable ridge preservation techniques are often necessary in the maxillary anterior areas. Maintaining and/or increasing blood supply and stability is essential to graft survival. The objective of this study was to determine the effect on extraction socket seal of pedicle subepithelial connective tissue graft with tunneling on maxillary esthetic zone through healing state for 8 weeks.

THE PHYSICAL PROPERTIES AND HEALING EFFECT OF CALCIUM SULFATE-HYDROXYAPATITE COMPOUND ON ROOT PERFORATION (Calcium sulfate-Hydroxyapatite 혼합재의 물성 및 치근천공 치유효과에 관한 연구)

  • Lee, Seung-Jong;Kim, Kyoung-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.2
    • /
    • pp.739-750
    • /
    • 1997
  • Treatment of root perforation elicits special considerations due to its blood-contaminated circumstances. It is known that conventional dental restorative materials are all leaking. Calcium sulfate is the material which react with water to become chemically set. This study, therefore, was performed to develop a new compound containing calcium sulfate and to evaluate its physical and biological characteristics. Three materials were used, IRM, calcium sulfate, calcium sulfate-hydroxyapatite compound. The composition of the calcium sulfate-hydroxyapatite compound was basically 50 % of calcium sulfate and 50 % of hydroxyapatite mixed with guajacol. The materials were mixed in conventional way and underwent four physical test procedures, setting time, solubility test, compressive strength, and marginal leakage test. All materials were evaluated under the scanning electron microscope to examine the marginal sealing ability. Animal experiment was also performed to test the materials' tissue response. Twenty-four dog's premolars were tested with either furcation perforations or apical retro-fillings. From the results, we found that calcium sulfate possess the good marginal sealing ability. However, calcium sulfate creates many voids which is caused by crystal thrusting action when it reacts with water. It seemed that the voids caused disintegration of the material which eventually lead to tissue reaction. By compounding calcium sulfate and hydroxyapatite, we were able to obtain the better physical properties but it showed larger marginal gap between the material and the root surface. Within the six weeks observation period, both IRM and calcium sulfate-hydroxyapatite compound showed good tissue responses in animal experiment. It is concluded that calcium sulfate would be the material of choice in root perforation repair, but the physical property needs to be further improved.

  • PDF