• Title/Summary/Keyword: Blood properties

Search Result 716, Processing Time 0.025 seconds

Enzyme-Free Glucose Sensing with Polyaniline-Decorated Flexible CNT Fiber Electrode (Polyaniline을 이용한 CNT fiber 유연 전극 기반의 비효소적 글루코스 검출)

  • Song, Min-Jung
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • As the demand for wearable devices increases, many studies have been studied on the development of flexible electrode materials recently. In particular, the development of high-performance flexible electrode materials is very important for wearable sensors for healthcare because it is necessary to continuously monitor and accurately detect body information such as body temperature, heart rate, blood glucose, and oxygen concentration in real time. In this study, we fabricated the nonenzymatic glucose sensor based on polyaniline/carbon nanotube fiber (PANI/CNT fiber) electrode. PANI layer was synthesized on the flexible CNT fiber electrode through electrochemical polymerization process in order to improve the performance of a flexible CNT fiber based electrode material. Surface morphology of the PANI/CNT fiber electrode was observed by scanning electron microscopy. And its electrochemical characteristics were investigated by chronoamperometry, cyclic voltammetry, electrochemical impedance spectroscopy. Compared to bare CNT fiber electrode, this PANI/CNT fiber electrode exhibited small electron transfer resistance, low peak separation potential and large surface area, resulting in enhanced sensing properties for glucose such as wide linear range (0.024~0.39 and 1.56~50 mM), high sensitivity (52.91 and 2.24 ㎂/mM·cm2), low detection limit (2 μM) and good selectivity. Therefore, it is expected that it will be possible to develop high performance CNT fiber based flexible electrode materials using various nanomaterials.

Effects of taurine and ginseng extracts on energy metabolism during exercise and their anti-fatigue properties in mice

  • Kim, Jisu;Beak, Suji;Ahn, Sanghyun;Moon, Byung Seok;Kim, Bom Sahn;Lee, Sang Ju;Oh, Seung Jun;Park, Hun-Young;Kwon, Seung Hae;Shin, Chul Ho;Lim, Kiwon;Lee, Kang Pa
    • Nutrition Research and Practice
    • /
    • v.16 no.1
    • /
    • pp.33-45
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Ginseng extract (GSE) and taurine (TR) are widely used antifatigue resources in functional foods. However, the mechanism underlying the antifatigue effects of GSE and TR are still unclear. Hence, we investigated whether GSE and TR have synergistic effects against fatigue in mice. MATERIALS/METHODS: L6 cells were treated with different concentrations of TR and GSE, and cell viability was determined using 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium. Oxidative stress was analyzed by immunocytochemistry using MitoTrackerTM Red FM and an anti-8-oxoguanine antibody. Respiratory gas analysis was performed to investigate metabolism. Expression of an activated protein kinase was analyzed using immunohistochemistry. Gene expression of cluster of differentiation 36 and pyruvate dehydrogenase lipoamide kinase isozyme 4 was measured using reverse transcription-polymerase chain reaction. Mice were orally administered TR, GSE, or their combination for 30 days, and then fatigue-related parameters, including lactate, blood urea nitrogen, and glycogen, were measured after forced swimming. RESULTS: TR and GSE reduced oxidative stress levels in hydrogen peroxide-stimulated L6 cells and enhanced the oxygen uptake and lipid metabolism in mice after acute exercise. After oral administration of TR or GSE for 30 days, the fatigue-related parameters did not change in mice. However, the mice administered GSE (400 mg/kg/day) alone for 30 days could swim longer than those from the other groups. Further, no synergistic effect was observed after the swimming exercise in mice treated with the TR and GSE combination for 30 days. CONCLUSIONS: Taken together, our data suggest that TR and GSE may exert antifatigue effects in mice after acute exercise by enhancing oxygen uptake and lipid oxidation.

Fe3O4 magnetic nanoparticles provide a novel alternative strategy for Staphylococcus aureus bone infection

  • Youliang, Ren;Jin, Yang;Jinghui, Zhang;Xiao, Yang;Lei, Shi;Dajing, Guo;Yuanyi, Zheng;Haitao, Ran;Zhongliang, Deng;Lei, Chu
    • Advances in nano research
    • /
    • v.13 no.6
    • /
    • pp.575-585
    • /
    • 2022
  • Due to its biofilm formation and colonization of the osteocyte-lacuno canalicular network (OLCN), Staphylococcus aureus (S.aureus) implant-associated bone infection (SIABI) is difficult to cure thoroughly, and may occur recurrently subsequently after a long period dormant. It is essential to explore an alternative therapeutic strategy that can eradicate the pathogens in the infected foci. To address this, the polymethylmethacrylate (PMMA) bone cement and Fe3O4 nanoparticles compound cylinder were developed as implants based on their size and mechanical properties for the alternative magnetic field (AMF) induced thermal ablation, The PMMA mixed with optimized 2% Fe3O4 nanoparticles showed an excellent antibacterial efficacy in vitro. It was evaluated by the CFU, CT scan and histopathological staining on a rabbit 1-stage transtibial screw model. The results showed that on week 7, the CFU of infected soft tissue and implants, and the white blood cells (WBCs) of the PMMA+2% Fe3O4+AMF group decreased significantly from their controls (p<0.05). PMMA+2% Fe3O4+AMF group did not observe bone resorption, periosteal reaction, and infectious reactive bone formation by CT images. Further histopathological H&E and Gram Staining confirmed there was no obvious inflammatory cell infiltration, neither pathogens residue nor noticeably burn damage around the infected screw channel in the PMMA+2% Fe3O4+AMF group. Further investigation of nanoparticle distributions in bone marrow medullary and vital organs of heart, liver, spleen, lung, and kidney. There were no significantly extra Fe3O4 nanoparticles were observed in the medullary cavity and all vital organs either. In the current study, PMMA+2% Fe3O4+AMF shows promising therapeutic potential for SIABI by providing excellent mechanical support, and promising efficacy of eradicating the residual pathogenic bacteria in bone infected lesions.

Evaluation of the Relationship between the Exposure Level to Mixed Hazardous Heavy Metals and Health Effects Using Factor Analysis (요인분석을 이용한 유해 중금속 복합 노출수준과 건강영향과의 관련성 평가)

  • Kim, Eunseop;Moon, Sun-In;Yim, Dong-Hyuk;Choi, Byung-Sun;Park, Jung-Duck;Eom, Sang-Yong;Kim, Yong-Dae;Kim, Heon
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.4
    • /
    • pp.236-243
    • /
    • 2022
  • Background: In the case of multiple exposures to different types of heavy metals, such as the conditions faced by residents living near a smelter, it would be preferable to group hazardous substances with similar characteristics rather than individually related substances and evaluate the effects of each group on the human body. Objectives: The purpose of this study is to evaluate the utility of factor analysis in the assessment of health effects caused by exposure to two or more hazardous substances with similar characteristics, such as in the case of residents living near a smelter. Methods: Heavy metal concentration data for 572 people living in the vicinity of the Janghang smelter area were grouped based on several subfactors according to their characteristics using factor analysis. Using these factor scores as an independent variable, multiple regression analysis was performed on health effect markers. Results: Through factor analysis, three subfactors were extracted. Factor 1 contained copper and zinc in serum and revealed a common characteristic of the enzyme co-factor in the human body. Factor 2 involved urinary cadmium and arsenic, which are harmful metals related to kidney damage. Factor 3 encompassed blood mercury and lead, which are classified as related to cardiovascular disease. As a result of multiple linear regression analysis, it was found that using the factor index derived through factor analysis as an independent variable is more advantageous in assessing the relevance to health effects than when analyzing the two heavy metals by including them in a single regression model. Conclusions: The results of this study suggest that regression analysis linked with factor analysis is a good alternative in that it can simultaneously identify the effects of heavy metals with similar properties while overcoming multicollinearity that may occur in environmental epidemiologic studies on exposure to various types of heavy metals.

Anti-fatigue effect of tormentic acid through alleviating oxidative stress and energy metabolism-modulating property in C2C12 cells and animal models

  • Ho-Geun Kang;Jin-Ho Lim;Hee-Yun Kim;Hyunyong Kim;Hyung-Min Kim;Hyun-Ja Jeong
    • Nutrition Research and Practice
    • /
    • v.17 no.4
    • /
    • pp.670-681
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Oxidative stress is caused by reactive oxygen species and free radicals that accelerate inflammatory responses and exacerbate fatigue. Tormentic acid (TA) has antioxidant and anti-inflammatory properties. Thus, the aim of present study is to determine the fatigue-regulatory effects of TA in H2O2-stimulated myoblast cell line, C2C12 cells and treadmill stress test (TST) and forced swimming test (FST) animal models. MATERIALS/METHODS: In the in vitro study, C2C12 cells were pretreated with TA before stimulation with H2O2. Then, malondialdehyde (MDA), lactate dehydrogenase (LDH), creatine kinase (CK) activity, tumor necrosis factor (TNF)-α, interleukin (IL)-6, superoxide dismutase (SOD), catalase (CAT), glycogen, and cell viability were analyzed. In the in vivo study, the ICR male mice were administered TA or distilled water orally daily for 28 days. FST and TST were then performed on the last day. In addition, biochemical analysis of the serum, muscle, and liver was performed. RESULTS: TA dose-dependently alleviated the levels of MDA, LDH, CK activity, TNF-α, and IL-6 in H2O2-stimulated C2C12 cells without affecting the cytotoxicity. TA increased the SOD and CAT activities and the glycogen levels in H2O2-stimulated C2C12 cells. In TST and FST animal models, TA decreased the FST immobility time significantly while increasing the TST exhaustion time without weight fluctuations. The in vivo studies showed that the levels of SOD, CAT, citrate synthase, glycogen, and free fatty acid were increased by TA administration, whereas TA significantly reduced the levels of glucose, MDA, LDH, lactate, CK, inflammatory cytokines, alanine transaminase, aspartate transaminase, blood urea nitrogen, and cortisol compared to the control group. CONCLUSIONS: TA improves fatigue by modulating oxidative stress and energy metabolism in C2C12 cells and animal models. Therefore, we suggest that TA can be a powerful substance in healthy functional foods and therapeutics to improve fatigue.

Effect of sweet pumpkin powder on lipid metabolism in leptin-deficient mice (Leptin 유전자 결핍 동물모델에서 단호박분말 투여가 지방대사변화에 미치는 영향)

  • Inae Jeong;Taesang Son;Sang-myeong Jun;Hyun-Jung Chung;Ok-Kyung Kim
    • Journal of Nutrition and Health
    • /
    • v.56 no.5
    • /
    • pp.469-482
    • /
    • 2023
  • Purpose: Obesity has emerged as a critical global public health concern as it is associated with and increases susceptibility to various diseases. This condition is characterized by the excessive enlargement of adipose tissue, primarily stemming from an inequity between energy intake and expenditure. The purpose of this study was to investigate the potential of sweet pumpkin powder in mitigating obesity and metabolic disorders in leptin-deficient obese (ob/ob) mice and to compare the effects of raw sweet pumpkin powder (HNSP01) and heat-treated sweet pumpkin powder (HNSP02). Methods: Leptin-deficient obese mice were fed a diet containing 10% HNSP01 and another containing 10% HNSP02 for 6 weeks. Results: The supplementation of ob/ob mice with HNSP01 and HNSP02 resulted in decreased body weight gain, reduced adipose tissue weight, and a smaller size of lipid droplets in the adipose tissue and liver. Furthermore, the ob/ob-HNSP01 and ob/ob-HNSP02 supplemented groups exhibited lower levels of triglycerides, total cholesterol, low-density lipoprotein cholesterol, fasting blood glucose, and insulin, as well as a reduced atherogenic index in comparison with the control group. Molecular analysis also demonstrated that the intake of HNSP01 and HNSP02 resulted in a diminished activation of factors associated with fatty acid synthesis, including acetyl-CoA carboxylase and fatty acid synthase, while concurrently enhancing factors associated with lipolysis, including adipose triglyceride lipase and hormone-sensitive lipase, in the adipose tissue. Conclusion: Taken together, these findings collectively demonstrate the potential of sweet pumpkin powder as a functional food ingredient with therapeutic properties against obesity and its associated metabolic disorders, such as insulin resistance and dyslipidemia.

Anti-coagulation and Platelet Aggregation Inhibitory Activities of the Ethanol Extract of Aerial Bulbils of Dioscorea alata L. (열대마 영여자 추출물의 항응고 및 혈소판 응집저해 활성)

  • Su-Gyeong Jeon;So-Young Choe;Kyung-Ran Im;Jong-Pil Lee;Jun-Hong Park;Ho-Yong Sohn
    • Journal of Life Science
    • /
    • v.34 no.3
    • /
    • pp.153-159
    • /
    • 2024
  • Dioscorea alata L, commonly known as "tropical yam" is the most widely consumed yam species among the 650 yam species belonging to the Dioscoreacea family. It is extensively cultivated in tropical and subtropical regions and is a major food source in Africa and India. Also, it is used for medicinal purposes, particularly in China and Taiwan, for its anti-inflammatory properties. In comparison to other yam varieties such as D. batatas or D. opposita, the tropical yam has gained popularity in Korea due to its higher yield per unit area. In this study, the nutritional characteristics and anti-thrombosis activity of the aerial bulbils of D. alata L. tropical yam were compared to those of D. opposita. The results showed that the aerial bulbils of tropical yam exhibited nutritional characteristics and potent anticoagulant activity compared to those of domestic yam varieties. The bulbils extract of tropical yam showed superior anticoagulant activities against thrombin, prothrombin and blood coagulation factors. Furthermore, the bulbils extract of tropical yam exhibited strong platelet aggregation inhibition at 0.25 mg/ml and showed no hemolytic activity up to a concentration of 2.5 mg/ml. These findings suggest the potential development of high-value anti-thrombosis agents utilizing the aerial bulbils of tropical yam.

A Study on Microbial Contamination according to Effective Management Strategies of Indoor Climbing Gym Holds (실내 클라이밍 짐 홀드의 관리방법에 따른 미생물 오염에 관한 연구)

  • Ji-In Kim;Hyejin Shin;Yujeong Jeong;Haesong Sher;Gitaek Oh;Yonghoo Park;Sungkyoon Kim
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.2
    • /
    • pp.102-112
    • /
    • 2024
  • Background: Despite the rise in the number of domestic indoor climbing gyms, there is a lack of specific hygiene standards and research on the holds installed in them. Holds can act as vectors for microbial transmission through the hands, posing a risk of infectious diseases, especially with damaged skin. Objectives: The aim of this study is to investigate the contamination level and species of microorganisms on holds according to the management methods practiced in indoor climbing gyms and identify effective strategies for reducing microbial contamination. Methods: We investigated factors that may influence microbial contamination of holds, including hold management methods, user information, and hygiene management at three climbing gyms in Seoul. A total of 72 holds were sampled, 18 for each management method of brushing, high-pressure washing, and ethanol disinfection. Samples were cultured on LB and blood agar at 37℃ for 48 hours to calculate CFUs. PCR assay targeting 16S rRNA was carried out to identify microorganisms. Dunn-Bonferroni was employed to see the microbial reduction effect of the management method and the difference in microbial contamination by management method and climbing gym. Results: As a result of microbial identification, microorganisms such as Bacillus, Staphylococcus, and Micrococcus, which were derived from various environments such as skin and soil, were discovered on the surface of the climbing hold. Among the discovered microorganisms, some species had potential pathogenic properties that could cause food poisoning, gastrointestinal disease, bacteremia, and sepsis. All hold management methods were effective in reducing microorganisms (p<0.05), with ethanol disinfection being the most effective (p<0.001). Conclusions: Our results indicate that there are potential pathogens on holds that demand thorough management for microbial prevention. Proposed methods include regular brushing and ethanol disinfection in addition to high-pressure washing with long cycles, which are the existing forms of hold management. Further studies on shoe management are advised to curb soil-derived microorganisms.

Enhanced Drug Carriage Efficiency of Curcumin-Loaded PLGA Nanoparticles in Combating Diabetic Nephropathy via Mitigation of Renal Apoptosis

  • Asmita Samadder;Banani Bhattacharjee;Sudatta Dey;Arnob Chakrovorty;Rishita Dey;Priyanka Sow;Debojyoti Tarafdar;Maharaj Biswas;Sisir Nandi
    • Journal of Pharmacopuncture
    • /
    • v.27 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • Background: Diabetic nephropathy (DN) is one of the major complications of chronic hyperglycaemia affecting normal kidney functioning. The ayurvedic medicine curcumin (CUR) is pharmaceutically accepted for its vast biological effects. Objectives: The Curcuma-derived diferuloylmethane compound CUR, loaded on Poly (lactide-co-glycolic) acid (PLGA) nanoparticles was utilized to combat DN-induced renal apoptosis by selectively targeting and modulating Bcl2. Methods: Upon in silico molecular docking and screening study CUR was selected as the core phytocompound for nanoparticle formulation. PLGA-nano-encapsulated-curcumin (NCUR) were synthesized following standard solvent displacement method. The NCUR were characterized for shape, size and other physico-chemical properties by Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS) and Fourier-Transform Infrared (FTIR) Spectroscopy studies. For in vivo validation of nephro-protective effects, Mus musculus were pre-treated with CUR at a dose of 50 mg/kg b.w. and NCUR at a dose of 25 mg/kg b.w. (dose 1), 12.5 mg/kg b.w (dose 2) followed by alloxan administration (100 mg/kg b.w) and serum glucose levels, histopathology and immunofluorescence study were conducted. Results: The in silico study revealed a strong affinity of CUR towards Bcl2 (dock score -10.94 Kcal/mol). The synthesized NCUR were of even shape, devoid of cracks and holes with mean size of ~80 nm having -7.53 mV zeta potential. Dose 1 efficiently improved serum glucose levels, tissue-specific expression of Bcl2 and reduced glomerular space and glomerular sclerosis in comparison to hyperglycaemic group. Conclusion: This study essentially validates the potential of NCUR to inhibit DN by reducing blood glucose level and mitigating glomerular apoptosis by selectively promoting Bcl2 protein expression in kidney tissue.

Changes in Physicochemical Properties and Microbial Population during Fermenting Process of Organic Fertilizer (혼합발효 유기질비료의 발효과정 중 이화학성 및 미생물밀도 변화)

  • Lee, Jong-Tae;Lee, Chan-Jung;Kim, Hee-Dae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.2
    • /
    • pp.116-123
    • /
    • 2004
  • This study was conducted to investigate the changes in physicochemical and microbiological properties during fermenting process of organic fertilizer which was made from the mixture of organic materials such as sesame oil cake, fish meal, blood meal, rice bran, ground bone meal, and natural minerals such as illite, crusted oyster shell and loess. They were mixed and fermented for 70 days. The sesame oil cake and rice bran, major ingredients for organic fertilizers, consisted of 7.6 and 2.6% total nitrogen, 3.6 and 4.6% $P_2O_5$, 1.4 and 2.2% $K_2O$, respectively. The ground bone meal included 29.2% $P_2O_5$ and illite included 3.8% $K_2O$. Temperature of organic fertilizer during the fermentation rapidly increased over $50^{\circ}C$ within 2 days after mixing and stabilized similar to outdoor temperature after 40 days. Moisture content decreased from 36.3 to 16.0% after 1 month. C/N ratio of organic fertilizer slightly increased until 30 days and thereafter, it slowly decreased, It resulted from the faster decrease of total nitrogen concentration compared with organic matter. Concentration of $NH_4-N$ in organic fertilizer rapidly increased from 1,504 to $5,530mg\;kg^{-1}$, the highest concentration after 10 days. Meantime, $NO_3-N$ concentration was low and constant about $150mg\;kg^{-1}$ over the whole fermenting period. This result seemed to be due to the high pH. The organic ferfilizer fermented for 70 days was composed of 2.7% N, 2.8% $P_2O_5$, 1.8% $K_2O$, and 35.9% organic matter. Total populations of aerobic bacteria, Bacillus sp. and actinomycetes, after fermenting process, were $12.5{\times}10^{10}$, $45.5{\times}10^{5}$ and $13.6{\times}10^{5}cfu\;g^{-1}$ respectively. Pseudomonas sp. was $71.9{\times}10^{7}cfu\;g^{-1}$ at first, but it rapidly decreased according to the rise of temperature. Yeasts played an important role in the early stage of fermentation and molds did in the late stage.