• Title/Summary/Keyword: Blood Transcriptomics

Search Result 8, Processing Time 0.019 seconds

OMICS approaches in cardiovascular diseases: a mini review

  • Sohag, Md. Mehadi Hasan;Raqib, Saleh Muhammed;Akhmad, Syaefudin Ali
    • Genomics & Informatics
    • /
    • v.19 no.2
    • /
    • pp.13.1-13.8
    • /
    • 2021
  • Ranked in the topmost position among the deadliest diseases in the world, cardiovascular diseases (CVDs) are a global burden with alterations in heart and blood vessels. Early diagnostics and prognostics could be the best possible solution in CVD management. OMICS (genomics, proteomics, transcriptomics, and metabolomics) approaches could be able to tackle the challenges against CVDs. Genome-wide association studies along with next-generation sequencing with various computational biology tools could lead a new sight in early detection and possible therapeutics of CVDs. Human cardiac proteins are also characterized by mass spectrophotometry which could open the scope of proteomics approaches in CVD. Besides this, regulation of gene expression by transcriptomics approaches exhibits a new insight while metabolomics is the endpoint on the downstream of multi-omics approaches to confront CVDs from the early onset. Although a lot of challenges needed to overcome in CVD management, OMICS approaches are certainly a new prospect.

Anti-diabetic Mechannism Study of Korean Red Ginseng by Transcriptomics (전사체 프로파일을 이용한 고려 홍삼의 항당뇨 기전 연구)

  • Yuan, Hai-Dan;Shin, En-Jung;Chung, Sung-Hyun
    • YAKHAK HOEJI
    • /
    • v.52 no.5
    • /
    • pp.345-354
    • /
    • 2008
  • This study was designed to investigate the anti-diabetic effect and mechanism of Korean red ginseng extract through transcriptomics in C57BL/KsJ db/db mice. The db/db mice were randomly divided into six groups: diabetic control group (DC), red ginseng extract low dose group (RGL, 100 mg/kg), red ginseng extract high dose group (RGH, 200 mg/kg), metformin group (MET, 300 mg/kg), glipizide group (GPZ, 15 mg/kg) and pioglitazone group (PIO, 30 mg/kg), and treated with drugs once per day for 10 weeks. At the end of treatment, we measured blood glucose, insulin, hemoglobin A1c (HbA1c), triglyceride (TG), adiponectin, leptin, non-esterified fatty acid (NEFA). RGL-treated group lowered the blood glucose and HbA1c levels by 19.6% and 11.4% compared to those in diabetic control group. In addition, plasma adiponectin and leptin levels in RGL-treated groups were increased by 20% and 12%, respectively, compared to those in diabetic control. Morphological analyses of liver, pancreas and epidydimal adipose tissue were done by hematoxylin-eosin staining, and pancreatic islet insulin and glucagon levels were detected by double-immunofluorescence staining. RGL-treated group revealed higher insulin contents and lower glucagon contents compared to diabetic control. To elucidate an action mechanism of Korean red ginseng, DNA microarray analyses were performed in liver and fat tissues, and western blot and RT-PCR were conducted in liver for validation. According to hierarchical clustering and principal component analysis of gene expression Korean red ginseng treated groups were close to metformin treated group. In summary, Korean red ginseng lowered the blood glucose level through protecting destruction of islet cells and shifting glucose metabolism from hepatic glucose production to glucose utilization and improving insulin sensitivity through enhancing plasma adiponectin and leptin levels.

Integrated Bioinformatics Approach Reveals Crosstalk Between Tumor Stroma and Peripheral Blood Mononuclear Cells in Breast Cancer

  • He, Lang;Wang, Dan;Wei, Na;Guo, Zheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1003-1008
    • /
    • 2016
  • Breast cancer is now the leading cause of cancer death in women worldwide. Cancer progression is driven not only by cancer cell intrinsic alterations and interactions with tumor microenvironment, but also by systemic effects. Integration of multiple profiling data may provide insights into the underlying molecular mechanisms of complex systemic processes. We performed a bioinformatic analysis of two public available microarray datasets for breast tumor stroma and peripheral blood mononuclear cells, featuring integrated transcriptomics data, protein-protein interactions (PPIs) and protein subcellular localization, to identify genes and biological pathways that contribute to dialogue between tumor stroma and the peripheral circulation. Genes of the integrin family as well as CXCR4 proved to be hub nodes of the crosstalk network and may play an important role in response to stroma-derived chemoattractants. This study pointed to potential for development of therapeutic strategies that target systemic signals travelling through the circulation and interdict tumor cell recruitment.

Host Blood Transcriptional Signatures as Candidate Biomarkers for Predicting Progression to Active Tuberculosis

  • Chang Ho Kim;Gahye Choi;Jaehee Lee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.86 no.2
    • /
    • pp.94-101
    • /
    • 2023
  • A recent understanding of the dynamic continuous spectrum of Mycobacterium tuberculosis infection has led to the recognition of incipient tuberculosis, which refers to the latent infection state that has begun to progress to active tuberculosis. The importance of early detection of these individuals with a high-risk of progression to active tuberculosis is emphasized to efficiently implement targeted tuberculosis preventive therapy. However, the tuberculin skin test or interferon-γ release assay, which is currently used for the diagnosis of latent tuberculosis infection, does not aid in the prediction of the risk of progression to active tuberculosis. Thus, a novel test is urgently needed. Recently, simultaneous and systematic analysis of differentially expressed genes using a high-throughput platform has enabled the discovery of key genes that may serve potential biomarkers for the diagnosis or prognosis of diseases. This host transcriptional investigation has been extended to the field of tuberculosis, providing promising results. The present review focuses on recent progress and challenges in the field of blood transcriptional signatures to predict progression to active tuberculosis.

Advances in Systems Biology Approaches for Autoimmune Diseases

  • Kim, Ho-Youn;Kim, Hae-Rim;Lee, Sang-Heon
    • IMMUNE NETWORK
    • /
    • v.14 no.2
    • /
    • pp.73-80
    • /
    • 2014
  • Because autoimmune diseases (AIDs) result from a complex combination of genetic and epigenetic factors, as well as an altered immune response to endogenous or exogenous antigens, systems biology approaches have been widely applied. The use of multi-omics approaches, including blood transcriptomics, genomics, epigenetics, proteomics, and metabolomics, not only allow for the discovery of a number of biomarkers but also will provide new directions for further translational AIDs applications. Systems biology approaches rely on high-throughput techniques with data analysis platforms that leverage the assessment of genes, proteins, metabolites, and network analysis of complex biologic or pathways implicated in specific AID conditions. To facilitate the discovery of validated and qualified biomarkers, better-coordinated multi-omics approaches and standardized translational research, in combination with the skills of biologists, clinicians, engineers, and bioinformaticians, are required.

Parabiosis and Blood Exchange Techniques in Aging Research (개체병렬결합(parabiosis)실험모델과 혈액교환을 이용한 노화(aging)연구 분석)

  • Kyung Tae Chung
    • Journal of Life Science
    • /
    • v.33 no.2
    • /
    • pp.208-215
    • /
    • 2023
  • In recent decades, the field of aging research has progressed from the genetic and cellular levels to in vivo models of blood exchange. Since genes capable of extending the lifespan in C. elegance have been reported, various potential target molecules have been discovered through genomics, proteomics, metabolomics, and transcriptomics. Accordingly, research on the interactions between target molecules has also been increasing. The parabiosis method, in which two experimental animals are surgically combined, was introduced, and a factor that could reverse the aging phenomenon was discovered using this method. The parabiosis method is used to find more accurate and effective aging-reversal factors that could exist in young blood. As more new evidence has been revealed, the parabiosis method has established a new paradigm for aging research. Moreover, a device capable of exchanging blood elaborately in laboratory animals was published in 2022 and presented new results necessary for aging reversal. Since GDF11, was reported, many other anti-aging candidates that are soluble factors in blood, such as β2m, TIMP2, VCAM1, Gpld1, and clusterin, have been discovered. In addition, mcicroglia cells and neuroinflammation have been directly proven to be aging factors. These latest research results were obtained by parabiosis, the newly designed device for plasmapheresis, and injecting young blood or conditioned blood methods. In this review, we discuss the latest research results using the device and young blood administration in old mice.

Nutritional Metabolomics (영양 대사체학)

  • Hong, Young-Shick
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.2
    • /
    • pp.179-186
    • /
    • 2014
  • Metabolomics is the study of changes in the metabolic status of an organism as a consequence of drug treatment, environmental influences, nutrition, lifestyle, genetic variations, toxic exposure, disease, stress, etc, through global or comprehensive identification and quantification of every single metabolite in a biological system. Since most chronic diseases have been demonstrated to be linked to nutrition, nutritional metabolomics has great potential for improving our understanding of the relationship between disease and nutritional status, nutrient, or diet intake by exploring the metabolic effects of a specific food challenge in a more global manner, and improving individual health. In particular, metabolite profiling of biofluids, such as blood, urine, or feces, together with multivariate statistical analysis provides an effective strategy for monitoring human metabolic responses to dietary interventions and lifestyle habits. Therefore, studies of nutritional metabolomics have recently been performed to investigate nutrition-related metabolic pathways and biomarkers, along with their interactions with several diseases, based on animal-, individual-, and population-based criteria with the goal of achieving personalized health care in the future. This article introduces analytical technologies and their application to determination of nutritional phenotypes and nutrition-related diseases in nutritional metabolomics.

Effector Memory CD8+ and CD4+ T Cell Immunity Associated with Metabolic Syndrome in Obese Children

  • Yang, Da-Hee;Lee, Hyunju;Lee, Naeun;Shin, Min Sun;Kang, Insoo;Kang, Ki-Soo
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.24 no.4
    • /
    • pp.377-383
    • /
    • 2021
  • Purpose: We investigated the association of effector memory (EM) CD8+ T cell and CD4+ T cell immunity with metabolic syndrome (MS). Methods: Surface and intracellular staining of peripheral blood mononuclear cells was performed. Anti-interleukin-7 receptor-alpha (IL-7Rα) and CX3CR1 antibodies were used to stain the subsets of EM CD8+ T cells, while anti-interferon-gamma (IFN-γ), interleukin-17 (IL-17), and forkhead box P3 (FOXP3) antibodies were used for CD4+ T cell subsets. Results: Of the 47 obese children, 11 were female. Children with MS had significantly higher levels of serum insulin (34.8±13.8 vs. 16.4±6.3 µU/mL, p<0.001) and homeostasis model assessment of insulin resistance (8.9±4.1 vs. 3.9±1.5, p<0.001) than children without MS. Children with MS revealed significantly higher frequencies of IL-7Rαlow CD8+ T cells (60.1±19.1% vs. 48.4±11.5%, p=0.047) and IL-7RαlowCX3CR1+ CD8+ T cells (53.8±20.1% vs. 41.5±11.9%, p=0.036) than children without MS. As the serum triglyceride levels increased, the frequency of IL-7RαlowCX3CR1+ and IL-7RαhighCX3CR1- CD8+ T cells increased and decreased, respectively (r=0.335, p=0.014 and r=-0.350, p=0.010, respectively), in 47 children. However, no CD4+ T cell subset parameters were significantly different between children with and without MS. Conclusion: In obese children with MS, the changes in immunity due to changes in EM CD8+ T cells might be related to the morbidity of obesity.