DOI QR코드

DOI QR Code

OMICS approaches in cardiovascular diseases: a mini review

  • Sohag, Md. Mehadi Hasan (Department of Genetic Engineering and Biotechnology, Jagannath University) ;
  • Raqib, Saleh Muhammed (Baridhara Scholar's Institution) ;
  • Akhmad, Syaefudin Ali (Department of Biochemistry, Faculty of Medicine, Islamic University of Indonesia)
  • Received : 2021.01.18
  • Accepted : 2021.03.26
  • Published : 2021.06.30

Abstract

Ranked in the topmost position among the deadliest diseases in the world, cardiovascular diseases (CVDs) are a global burden with alterations in heart and blood vessels. Early diagnostics and prognostics could be the best possible solution in CVD management. OMICS (genomics, proteomics, transcriptomics, and metabolomics) approaches could be able to tackle the challenges against CVDs. Genome-wide association studies along with next-generation sequencing with various computational biology tools could lead a new sight in early detection and possible therapeutics of CVDs. Human cardiac proteins are also characterized by mass spectrophotometry which could open the scope of proteomics approaches in CVD. Besides this, regulation of gene expression by transcriptomics approaches exhibits a new insight while metabolomics is the endpoint on the downstream of multi-omics approaches to confront CVDs from the early onset. Although a lot of challenges needed to overcome in CVD management, OMICS approaches are certainly a new prospect.

Keywords

References

  1. Labarthe DR, Dunbar SB. Global cardiovascular health promotion and disease prevention: 2011 and beyond. Circulation 2012;125:2667-2676. https://doi.org/10.1161/CIRCULATIONAHA.111.087726
  2. World Health Organization. Cardiovascular diseases (CVDs) [Internet]. Geneva: World Health Organization, 2017 [cited 2021 Mar 23]. Available from: https://www.who.int/en/newsroom/fact-sheets/detail/cardiovascular-diseases-(cvds).
  3. Sanyaolu A, Okorie C, Marinkovic A, Patidar R, Younis K, Desai P, et al. Comorbidity and its impact on patients with COVID-19. SN Compr Clin Med 2020;2:1069-1076. https://doi.org/10.1007/s42399-020-00363-4
  4. British Heart Foundation. Cardiovascular disease (CVD): types, causes and symptoms [Internet]. Birmingham: British Heart Foundation, 2019 [cited 2021 Mar 23]. Available from: https://www.bhf.org.uk/informationsupport/conditions/cardiovascular-heart-disease.
  5. Yeates K, Lohfeld L, Sleeth J, Morales F, Rajkotia Y, Ogedegbe O. A global perspective on cardiovascular disease in vulnerable populations. Can J Cardiol 2015;31:1081-1093. https://doi.org/10.1016/j.cjca.2015.06.035
  6. Kreatsoulas C, Anand SS. The impact of social determinants on cardiovascular disease. Can J Cardiol 2010;26 Suppl C:8C-13C. https://doi.org/10.1016/S0828-282X(10)71075-8
  7. Cambien F, Tiret L. Genetics of cardiovascular diseases: from single mutations to the whole genome. Circulation 2007;116:1714-1724. https://doi.org/10.1161/CIRCULATIONAHA.106.661751
  8. Morrison N, Cochrane G, Faruque N, Tatusova T, Tateno Y, Hancock D, et al. Concept of sample in OMICS technology. OMICS 2006;10:127-137. https://doi.org/10.1089/omi.2006.10.127
  9. Heart disease [Internet]. Rochester: Mayo Clinic, 2021 [cited 2021 Mar 23]. Available from: https://www.mayoclinic.org/diseases-conditions/heart-disease/symptoms-causes/syc-20353118?p=1.
  10. Aboughdir M, Kirwin T, Abdul Khader A, Wang B. Prognostic value of cardiovascular biomarkers in COVID-19: a review. Viruses 2020;12:527. https://doi.org/10.3390/v12050527
  11. Yancy CW, Benjamin EJ, Fabunmi RP, Bonow RO. Discovering the full spectrum of cardiovascular disease: Minority Health Summit 2003: executive summary. Circulation 2005;111:1339-1349. https://doi.org/10.1161/01.CIR.0000157740.93598.51
  12. Horgan RP, Kenny LC. 'Omic' technologies: genomics, transcriptomics, proteomics and metabolomics. Obstet Gynaecol 2011; 13:189-195. https://doi.org/10.1576/toag.13.3.189.27672
  13. Schneider MV, Orchard S. Omics technologies, data and bioinformatics principles. Methods Mol Biol 2011;719:3-30. https://doi.org/10.1007/978-1-61779-027-0_1
  14. Ussher JR, Elmariah S, Gerszten RE, Dyck JR. The emerging role of metabolomics in the diagnosis and prognosis of cardiovascular disease. J Am Coll Cardiol 2016;68:2850-2870. https://doi.org/10.1016/j.jacc.2016.09.972
  15. Azuaje F, Devaux Y, Wagner D. Computational biology for cardiovascular biomarker discovery. Brief Bioinform 2009;10:367-377. https://doi.org/10.1093/bib/bbp008
  16. Shameer K, Badgeley MA, Miotto R, Glicksberg BS, Morgan JW, Dudley JT. Translational bioinformatics in the era of real-time biomedical, health care and wellness data streams. Brief Bioinform 2017;18:105-124. https://doi.org/10.1093/bib/bbv118
  17. Gottesman O, Scott SA, Ellis SB, Overby CL, Ludtke A, Hulot JS, et al. The CLIPMERGE PGx Program: clinical implementation of personalized medicine through electronic health records and genomics-pharmacogenomics. Clin Pharmacol Ther 2013;94: 214-217. https://doi.org/10.1038/clpt.2013.72
  18. Haarbrandt B, Tute E, Marschollek M. Automated population of an i2b2 clinical data warehouse from an openEHR-based data repository. J Biomed Inform 2016;63:277-294. https://doi.org/10.1016/j.jbi.2016.08.007
  19. Woo A, Rakowski H, Liew JC, Zhao MS, Liew CC, Parker TG, et al. Mutations of the beta myosin heavy chain gene in hypertrophic cardiomyopathy: critical functional sites determine prognosis. Heart 2003;89:1179-1185. https://doi.org/10.1136/heart.89.10.1179
  20. Roberts R, Marian AJ, Dandona S, Stewart AF. Genomics in cardiovascular disease. J Am Coll Cardiol 2013;61:2029-2037. https://doi.org/10.1016/j.jacc.2012.12.054
  21. Podgoreanu MV, Schwinn DA. Genomics and the circulation. Br J Anaesth 2004;93:140-148. https://doi.org/10.1093/bja/aeh168
  22. Podgoreanu MV, Schwinn DA. New paradigms in cardiovascular medicine: emerging technologies and practices: perioperative genomics. J Am Coll Cardiol 2005;46:1965-1977. https://doi.org/10.1016/j.jacc.2005.08.040
  23. Liew CC, Dzau VJ. Molecular genetics and genomics of heart failure. Nat Rev Genet 2004;5:811-825. https://doi.org/10.1038/nrg1470
  24. Graves PR, Haystead TA. Molecular biologist's guide to proteomics. Microbiol Mol Biol Rev 2002;66:39-63. https://doi.org/10.1128/MMBR.66.1.39-63.2002
  25. Yates JR 3rd. Mass spectrometry and the age of the proteome. J Mass Spectrom 1998;33:1-19. https://doi.org/10.1002/(SICI)1096-9888(199801)33:1<1::AID-JMS624>3.0.CO;2-9
  26. Qin J, Fenyo D, Zhao Y, Hall WW, Chao DM, Wilson CJ, et al. A strategy for rapid, high-confidence protein identification. Anal Chem 1997;69:3995-4001. https://doi.org/10.1021/ac970488v
  27. Muller EC, Thiede B, Zimny-Arndt U, Scheler C, Prehm J, Muller-Werdan U, et al. High-performance human myocardial two-dimensional electrophoresis database: edition 1996. Electrophoresis 1996;17:1700-1712. https://doi.org/10.1002/elps.1150171107
  28. Dunn MJ. Studying heart disease using the proteomic approach. Drug Discov Today 2000;5:76-84. https://doi.org/10.1016/S1359-6446(99)01449-X
  29. Wu AH. Early detection of acute coronary syndromes and risk stratification by multimarker analysis. Biomark Med 2007;1:45-57. https://doi.org/10.2217/17520363.1.1.45
  30. Tu WJ, Liu Q, Cao JL, Zhao SJ, Zeng XW, Deng AJ. Gamma-glutamyl transferase as a risk factor for all-cause or cardiovascular disease mortality among 5912 ischemic stroke. Stroke 2017;48: 2888-2891. https://doi.org/10.1161/STROKEAHA.117.017776
  31. Anderson L. Candidate-based proteomics in the search for biomarkers of cardiovascular disease. J Physiol 2005;563:23-60. https://doi.org/10.1113/jphysiol.2004.080473
  32. Fu Q, Van Eyk JE. Proteomics and heart disease: identifying biomarkers of clinical utility. Expert Rev Proteomics 2006;3:237-249. https://doi.org/10.1586/14789450.3.2.237
  33. Mayr M, Zhang J, Greene AS, Gutterman D, Perloff J, Ping P. Proteomics-based development of biomarkers in cardiovascular disease: mechanistic, clinical, and therapeutic insights. Mol Cell Proteomics 2006;5:1853-1864. https://doi.org/10.1074/mcp.R600007-MCP200
  34. Arnett DK, Claas SA. Omics of Blood Pressure and Hypertension. Circ Res 2018;122:1409-1419. https://doi.org/10.1161/CIRCRESAHA.118.311342
  35. Gomes CP, Agg B, Andova A, Arslan S, Baker A, Bartekova M, et al. Catalyzing transcriptomics research in cardiovascular disease: the CardioRNA COST Action CA17129. Noncoding RNA 2019; 5:31.
  36. Wu PY, Chandramohan R, Phan JH, Mahle WT, Gaynor JW, Maher KO, et al. Cardiovascular transcriptomics and epigenomics using next-generation sequencing: challenges, progress, and opportunities. Circ Cardiovasc Genet 2014;7:701-710. https://doi.org/10.1161/CIRCGENETICS.113.000129
  37. Zhou SS, Jin JP, Wang JQ, Zhang ZG, Freedman JH, Zheng Y, et al. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin 2018;39: 1073-1084. https://doi.org/10.1038/aps.2018.30
  38. Alavi-Moghaddam M, Chehrazi M, Alipoor SD, Mohammadi M, Baratloo A, Mahjoub MP, et al. A Preliminary study of microRNA-208b after acute myocardial infarction: impact on 6-month survival. Dis Markers 2018;2018:2410451. https://doi.org/10.1155/2018/2410451
  39. Rath M, Pauling L. A unified theory of human cardiovascular disease leading the way to the abolition of this disease as a cause for human mortality. J Orthomol Med 1992;7:5-15.
  40. Tahir UA, Gerszten RE. Omics and cardiometabolic disease risk prediction. Annu Rev Med 2020;71:163-175. https://doi.org/10.1146/annurev-med-042418-010924
  41. Senn T, Hazen SL, Tang WH. Translating metabolomics to cardiovascular biomarkers. Prog Cardiovasc Dis 2012;55:70-76. https://doi.org/10.1016/j.pcad.2012.06.004
  42. Polonis K, Wawrzyniak R, Daghir-Wojtkowiak E, Szyndler A, Chrostowska M, Melander O, et al. Metabolomic signature of early vascular aging (EVA) in hypertension. Front Mol Biosci 2020;7:12. https://doi.org/10.3389/fmolb.2020.00012
  43. McGarrah RW, Crown SB, Zhang GF, Shah SH, Newgard CB. Cardiovascular metabolomics. Circ Res 2018;122:1238-1258. https://doi.org/10.1161/CIRCRESAHA.117.311002
  44. Lewis GD, Asnani A, Gerszten RE. Application of metabolomics to cardiovascular biomarker and pathway discovery. J Am Coll Cardiol 2008;52:117-123. https://doi.org/10.1016/j.jacc.2008.03.043