• Title/Summary/Keyword: Blood Pressure Measurement

Search Result 401, Processing Time 0.029 seconds

Measurements of Blood Viscosity Using a Pressure-Scanning Slit Viscometer

  • Sehyun Shin;Lee, Sung-Woo;Ku, Yun-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.1036-1041
    • /
    • 2004
  • A newly designed pressure-scanning slit viscometer is developed to combine an optical device without refraction while measuring blood viscosity over a range of shear rates. The capillary tube in a previously designed capillary viscometer was replaced with a transparent slit, which is affordable to mount optical measurement of flowing blood cells. Using a pressure transducer, we measured the change of pressure in a collecting chamber with respect to the time, p(t), from which the viscosity and shear rate were mathematically calculated. For water, standard oil and whole blood, excellent agreement was found between the results from the pressure-scanning slit viscometer and those from a commercially available rotating viscometer. This new viscometer overcomes the drawbacks of the previously designed capillary viscometer in the measuring whole blood viscosity. First, the pressure-scanning slit viscometer can combine an optical instrument such as a microscope. Second, this design is low cost and simple (i.e., ease of operation, no moving parts, and disposable).

Improvement of a sensor unit for wrist blood pressure monitor (손목형 혈압계의 센서부 개선에 대한 연구)

  • Koo, Sang-Jun;Kwon, Jang-Wan;Park, Yong-Man;Ayuznara, Odgerel;Kim, Hie-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.380-382
    • /
    • 2007
  • As the society changes more to the aging society in future, many healthcare product are developed and distributed more on the market. The digital wrist band tye blood pressure device for home use are popular already in the market. It is useful for checking blood pressure level at home and control of hypertension. Especially. It is very essential home device to check the health condition of blood circulation disease. Nowadays many product types are available. But the measurement accuracy of blood pressure is not enough compared to the mechanical type. It needs to be upgraded to assure the precise health data enough to use in the hospital. The structure, feature and output signal of capacitor type pressure sensors are analyzed. An improved design fa capacitor sensor is suggested. It shows more precise health data after use on a wrist band type health unit. They can be applied for remote u-health medical service.

  • PDF

Nonconstrained Blood Pressure Measurement by Photoplethysmography

  • Yoon Young-Zoon;Yoon Gil-Won
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.91-95
    • /
    • 2006
  • Blood pressure was predicted from photoplethysmography (PPG). To obtain PPG, backscattered light from a fingertip was measured and its waveform was analyzed. Systolic upstroke time and diastolic time in the pulse waveform were used as parameters to predict blood pressure. The experiment was carried out with five subjects on five different days. The systolic upstroke time had a correlation coefficient of -0.605 with respect to systolic blood pressure and the diastolic time had a correlation coefficients of -0.764 for diastolic pressure. This PPG method does not require an air-cuff installation on the arm and can predict blood pressure continuously. This simple LED/photo detector setup can be a good candidate for nonconstrained monitoring of blood pressure variations.

Development of the Cardiovascular Simulator for Pulse Diagnosis Study (맥진연구를 위한 심혈관계 시뮬레이터의 개발)

  • Lee, Ju-Yeon;Shin, Sang-Hoon
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.16 no.1
    • /
    • pp.19-26
    • /
    • 2012
  • Objectives The aim of this study is to develop a cardiovascular simulator that can reproduce blood pressure pulse and blood flow similar to those of the human body. Methods In order to design a system similar to the human cardiovascular system, the required performances were determined by investigating the hemodynamic characteristics of the heart and the arterial system. Main organ to be imitated is heart in simulator. The rest of the system was minimally designed. Also, a blood pressure and blood flow measurement system was developed for measuring the results. Results The developed system showed blood pressure pulse at similar range of the human aorta. The result waveform include primary wave caused by ventricular systole except reflected wave. Conclusions The blood pressure and blow flow patterns were replicated by the simulator. These patterns were similar to those of the human body. The system will play an important role in studying pulse diagnostics.

Feasibility and Effectiveness of a Ring-Type Blood Pressure Measurement Device Compared With 24-Hour Ambulatory Blood Pressure Monitoring Device

  • Huijin Lee;Sungjoon Park;Hyuktae Kwon;Belong Cho;Jin Ho Park;Hae-Young Lee
    • Korean Circulation Journal
    • /
    • v.54 no.2
    • /
    • pp.93-104
    • /
    • 2024
  • Backgrounds and Objectives: This study aimed to evaluate the applicability and precision of a ring-type cuffless blood pressure (BP) measurement device, CART-I Plus, compared to conventional 24-hour ambulatory BP monitoring (ABPM). Methods: Forty patients were recruited, and 33 participants were included in the final analysis. Each participant wore both CART-I Plus and ABPM devices on the same arm for approximately 24 hours. BP estimation from CART-I Plus, derived from photoplethysmography (PPG) signals, were compared with the corresponding ABPM measurements. Results: The CART-I Plus recorded systolic blood pressure (SBP)/diastolic blood pressure (DBP) values of 131.4±14.1/81.1±12.0, 132.7±13.9/81.9±11.9, and 128.7±14.6/79.3±12.2 mmHg for 24-hour, daytime, and nighttime periods respectively, compared to ABPM values of 129.7±11.7/84.4±11.2, 131.9±11.6/86.3±11.1, and 124.5±13.6/80.0±12.2 mmHg. Mean differences in SBP/DBP between the two devices were 1.74±6.69/-3.24±6.51 mmHg, 0.75±7.44/-4.41±7.42 mmHg, and 4.15±6.15/-0.67±5.23 mmHg for 24-hour, daytime, and nighttime periods respectively. Strong correlations were also observed between the devices, with r=0.725 and r=0.750 for transitions in SBP and DBP from daytime to nighttime, respectively (both p<0.001). Conclusions: The CART-I Plus device, with its unique ring-type design, shows promising accuracy in BP estimation and offers a potential avenue for continuous BP monitoring in clinical practice.

Blood pressure measurements and hypertension in infants, children, and adolescents: from the postmercury to mobile devices

  • Lim, Seon Hee;Kim, Seong Heon
    • Clinical and Experimental Pediatrics
    • /
    • v.65 no.2
    • /
    • pp.73-80
    • /
    • 2022
  • A mercury sphygmomanometer (MS) has been the gold standard for pediatric blood pressure (BP) measurements, and diagnosing hypertension is critical. However, because of environmental issues, other alternatives are needed. Noninvasive BP measurement devices are largely divided into auscultatory and oscillometric types. The aneroid sphygmomanometer, the currently used auscultatory method, is inferior to MS in terms of limitations such as validation and regular calibration and difficult to apply to infants, in whom Korotkoff sounds are not audible. The oscillometric method uses an automatic device that eliminates errors caused by human observers and has the advantage of being easy to use; however, owing to its measurement accuracy issues, the development of an international validation protocol for children is important. The hybrid method, which combines the auscultatory and electronic methods, solves some of these problems by eliminating the observer bias of terminal digit preference while maintaining measurement accuracy; however, the auscultatory method remains limited. As the age-related characteristics of the pediatric group are heterogeneous, it is necessary to reconsider the appropriate BP measurement method suitable for this indication. In addition, the mobile application-based BP measurement market is growing rapidly with the development of smartphone applications. Although more research is still needed on their accuracy, many experts expect that mobile application-based BP measurement will effectively reduce medical costs due to increased ease of access and early BP management.

Analysis of Changed Bio-Signal to Radiation Exposure of Nuclear Medicine Worker (핵의학 종사자의 방사선 피폭에 따른 생체신호 변화 분석)

  • Lee, Hwun-Jae;Lee, Sang-Bock
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.1
    • /
    • pp.27-34
    • /
    • 2007
  • In this paper, We are evaluated about bio-signal between general workers and nuclear medicine workers which is more radiation exposure relatively. In order to reciprocal evaluated two group, we experimented nuclear medicine workers in Chung-Buk National University Hospital at department of nuclear medicine and worker in Chon-Nam National University Hospital at CT room, general radiographic room, medical recording room, receipt room, general office room. Used of experimental Equipments as follows, for a level of radiation measurement by pocket dosimeter which made by Arrow-Tech company, for heart rate and blood pressure measurement by TONOPORT V which made by GE medical systems company, for heat flux and skin temperature and energy expenditure measurement by Armband senseware 2000 which made by Bodymedia company. Result of experiment obtains as follows: 1) Individual radiation exposure is recorded 3.05 uSv at department of nuclear medicine and order as follows CT room, general radiograpic room, medical recording room, receipt room, general office room. Department of nuclear medicine more 1.5 times than other places. 2) Radiation accumulated dose is not related to Heat flux, Skin temperature, Energy expenditure. 3) Blood pressure is recorded equal to nuclear medical workers, general officer, general people about systolic blood pressure and diastolic blood pressure. Compared to blood pressure between nuclear medical works which is more radiation exposure and other workers was not changed. Consequently, more radiation exposed workers at nuclear medicine field doesn't have hazard.

Simultaneous measurements of red blood cell aggregation and blood viscosity in a slit rheometry with light transmission analysis (광 투사법을 이용한 슬릿 점도계에서의 적혈구 응집성 및 점도 측정에 관한 연구)

  • Park, Myung-Su;Ku, Yun-Hee;Shin, Se-Hyun;Suh, Jang-Su
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1678-1681
    • /
    • 2004
  • The light-transmission technique has been applied to a slit rheometer for measuring red blood cell aggregation as well as blood viscosity over a range of shear rates. For measurement of blood viscosity and aggregation, instantaneous pressure and transmit-light intensity are measured with time. Using a precision pressure measurement, one can determine the shear stress and shear rate. In addition, a transmitted light through a blood sample indicates degree of RBC aggregation. With abruptly flowing with high shear rate, RBCs rapidly disaggregate and the intensity of the transmitted light becomes low. When continuously flowing with decreasing shear rate, RBCs tend to re-aggregate and the corresponding transmit-intensity gradually increases with time. The light intensity as a degree of RBC aggregation is plotted against shear rate and compared with blood viscosity. The advantages of this design are dual measurement at a time, simplicity, i.e., ease of operation and no moving parts, low cost, short operating time, and the disposable kit which is contacted with blood sample.

  • PDF

Estimation of baroreflex sensitivity using pulse arrival time rather than systolic blood pressure measurement

  • Lee, Jong-Shill;Chee, Young-Joon
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.14-19
    • /
    • 2010
  • Baroreflex sensitivity (BRS) is a parameter of the cardiovascular system that is reflected in changes in pulse interval (PD and systolic blood pressure (SBP). BRS contains information about how the autonomic nervous system regulates hemodynamic homeostasis. Normally the beat-to-beat SBP measurement and the pulse interval measured from the electrocardiogram (ECG) are required to estimate the BRS. We investigated the possibility of measuring BRS in the absence of a beat-to-beat SBP measurement device. Pulse arrival time (PAT), defined as the time between the R-peak of the ECG and a single characteristic point on the pulse wave recorded from any arterial location was measured by photoplethysmography. By comparing the BRS obtained from conventional measurements with our method during controlled breathing, we confirmed again that PAT and SBP are closely correlated, with a correlation coefficient of -0.82 to -0.95. The coherence between SBP and PI at a respiration frequency of 0.07-0.12 Hz was similar to the coherence between PAT and PI. Although the ranges and units of measurement are different (ms/mmHg vs. ms/ms) for BRS measured conventionally and by our method, the correlation is very strong. Following further investigation under various conditions, BRS can be reliably estimated without the inconvenient and expensive beat-to-beat SBP measurement.

Mock Circulatory Robot with Artificial Aorta for Reproduction of Blood Pressure Waveform (혈압 파형 재현을 위한 인공 대동맥 기반 모의 순환계 로봇)

  • Jae-Hak Jeong;Yong-Hwa Park
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.221-228
    • /
    • 2024
  • As the importance of cardiovascular health is highlighted, research on its correlation with blood pressure, the most important indicator, is being actively conducted. Therefore, extensive clinical data is essential, but the measurement of the central arterial blood pressure waveform must be performed invasively within the artery, so the quantity and quality are limited. This study suggested a mock circulatory robot and artificial aorta to reproduce the blood pressure waveform generated by the overlap of forward and reflected waves. The artificial aorta was fabricated with biomimetic silicone to mimic the physiological structure and vascular stiffness of the human. A pressurizing chamber was implemented to prevent distortion of the blood pressure waveform due to the strain-softening of biomimetic silicone. The reproduced central arterial blood pressure waveforms have similar magnitude, shape, and propagation characteristics to humans. In addition, changes in blood pressure waveform due to aging were also reproduced by replacing an artificial aorta with various stiffness. It can be expanded to construct a biosignal database and health sensor testing platform, a core technology for cardiovascular health-related research.