• Title/Summary/Keyword: Blog Search

Search Result 48, Processing Time 0.024 seconds

The Study of Koreans' Perception about Vietnam using Social Big Data (베트남에 대한 한국인의 인식 연구 : 소셜 빅데이터를 활용하여)

  • Seo, Eun Hee;Lee, Jaeseong
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.3
    • /
    • pp.1-9
    • /
    • 2019
  • The purposes of the study are to investigate Koreans' perception about Vietnam by analyzing social big data and to seek changing direction in perception. For the purposes, the texts about Vietnam in Naver Blog and Twitter and the number of search and click for Vietnam in Naver were analyzed by Social Metrics of Daum Soft and Datalab of Naver. The study also analyzed the annual change of their interest in Vietnam based on social media. The results showed that Koreans still remember the Vietnam war, have a positive emotion toward Vietnam, and view Vietnam as a country where we can gain mutual benefit by exchange. The findings also indicated that Koreans perceive Vietnam as a favorite tourist spot regardless of age. Meanwhile, children under 12 showed a different pattern of an annual change in perception. It might be a positive sign that Koreans' interest region toward Vietnam would be diversified because children under 12 would be the central axis of cultural contents.

Intelligent Web Crawler for Supporting Big Data Analysis Services (빅데이터 분석 서비스 지원을 위한 지능형 웹 크롤러)

  • Seo, Dongmin;Jung, Hanmin
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.12
    • /
    • pp.575-584
    • /
    • 2013
  • Data types used for big-data analysis are very widely, such as news, blog, SNS, papers, patents, sensed data, and etc. Particularly, the utilization of web documents offering reliable data in real time is increasing gradually. And web crawlers that collect web documents automatically have grown in importance because big-data is being used in many different fields and web data are growing exponentially every year. However, existing web crawlers can't collect whole web documents in a web site because existing web crawlers collect web documents with only URLs included in web documents collected in some web sites. Also, existing web crawlers can collect web documents collected by other web crawlers already because information about web documents collected in each web crawler isn't efficiently managed between web crawlers. Therefore, this paper proposed a distributed web crawler. To resolve the problems of existing web crawler, the proposed web crawler collects web documents by RSS of each web site and Google search API. And the web crawler provides fast crawling performance by a client-server model based on RMI and NIO that minimize network traffic. Furthermore, the web crawler extracts core content from a web document by a keyword similarity comparison on tags included in a web documents. Finally, to verify the superiority of our web crawler, we compare our web crawler with existing web crawlers in various experiments.

Study on the Analysis of National Paralympics by Utilizing Social Big Data Text Mining (소셜 빅데이터 텍스트 마이닝을 활용한 전국장애인체육대회 분석 연구)

  • Kim, Dae kyung;Lee, Hyun Su
    • 한국체육학회지인문사회과학편
    • /
    • v.55 no.6
    • /
    • pp.801-810
    • /
    • 2016
  • The purpose of the study was to conduct a text mining examining keywords related to the National Paralympics and provide the fundamental information that would be used to change perception of people without disabilities toward disabilities and to promote the social participation of people with and without disabilities in the National Paralympics. Social big data regarding the National Paralympics were retrieved from news articles and blog postings identified by search engines, Naver, Daum, and Google. The data were then analysed using R-3.3.1 Version Program. The analysing techniques were cloud analysis, correlation analysis and social network analysis. The results were as follows. First, news were mainly related to game results, sports events, team participation and host avenue of the 33rd ~ 36th National Paralympics. Second, search results about the 33rd ~ 36th National Paralympics between Naver, Daum, and Google were similar to one another. Thirds, the keywrods, National Paralympics, sports for the disabled, and sports, demonstrated a high close centrality. Further, degree centrality and betweenness centrality were associated in the keywords such as sports for all, participation, research, development, sports-disabled, research-disabled, sports for all-participation, disabled-participation, sports for all-disabled, and host-paralympics.

Analysis of Knowledge Community for Knowledge Creation and Use (지식 생성 및 활용을 위한 지식 커뮤니티 효과 분석)

  • Huh, Jun-Hyuk;Lee, Jung-Seung
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.85-97
    • /
    • 2010
  • Internet communities are a typical space for knowledge creation and use on the Internet as people discuss their common interests within the internet communities. When we define 'Knowledge Communities' as internet communities that are related to knowledge creation and use, they are categorized into 4 different types such as 'Search Engine,' 'Open Communities,' 'Specialty Communities,' and 'Activity Communities.' Each type of knowledge community does not remain the same, for example. Rather, it changes with time and is also affected by the external business environment. Therefore, it is critical to develop processes for practical use of such changeable knowledge communities. Yet there is little research regarding a strategic framework for knowledge communities as a source of knowledge creation and use. The purposes of this study are (1) to find factors that can affect knowledge creation and use for each type of knowledge community and (2) to develop a strategic framework for practical use of the knowledge communities. Based on previous research, we found 7 factors that have considerable impacts on knowledge creation and use. They were 'Fitness,' 'Reliability,' 'Systemicity,' 'Richness,' 'Similarity,' 'Feedback,' and 'Understanding.' We created 30 different questions from each type of knowledge community. The questions included common sense, IT, business and hobbies, and were uniformly selected from various knowledge communities. Instead of using survey, we used these questions to ask users of the 4 representative web sites such as Google from Search Engine, NAVER Knowledge iN from Open Communities, SLRClub from Specialty Communities, and Wikipedia from Activity Communities. These 4 representative web sites were selected based on popularity (i.e., the 4 most popular sites in Korea). They were also among the 4 most frequently mentioned sitesin previous research. The answers of the 30 knowledge questions were collected and evaluated by the 11 IT experts who have been working for IT companies more than 3 years. When evaluating, the 11 experts used the above 7 knowledge factors as criteria. Using a stepwise linear regression for the evaluation of the 7 knowledge factors, we found that each factors affects differently knowledge creation and use for each type of knowledge community. The results of the stepwise linear regression analysis showed the relationship between 'Understanding' and other knowledge factors. The relationship was different regarding the type of knowledge community. The results indicated that 'Understanding' was significantly related to 'Reliability' at 'Search Engine type', to 'Fitness' at 'Open Community type', to 'Reliability' and 'Similarity' at 'Specialty Community type', and to 'Richness' and 'Similarity' at 'Activity Community type'. A strategic framework was created from the results of this study and such framework can be useful for knowledge communities that are not stable with time. For the success of knowledge community, the results of this study suggest that it is essential to ensure there are factors that can influence knowledge communities. It is also vital to reinforce each factor has its unique influence on related knowledge community. Thus, these changeable knowledge communities should be transformed into an adequate type with proper business strategies and objectives. They also should be progressed into a type that covers varioustypes of knowledge communities. For example, DCInside started from a small specialty community focusing on digital camera hardware and camerawork and then was transformed to an open community focusing on social issues through well-known photo galleries. NAVER started from a typical search engine and now covers an open community and a special community through additional web services such as NAVER knowledge iN, NAVER Cafe, and NAVER Blog. NAVER is currently competing withan activity community such as Wikipedia through the NAVER encyclopedia that provides similar services with NAVER encyclopedia's users as Wikipedia does. Finally, the results of this study provide meaningfully practical guidance for practitioners in that which type of knowledge community is most appropriate to the fluctuated business environment as knowledge community itself evolves with time.

Improved Sentence Boundary Detection Method for Web Documents (웹 문서를 위한 개선된 문장경계인식 방법)

  • Lee, Chung-Hee;Jang, Myung-Gil;Seo, Young-Hoon
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.6
    • /
    • pp.455-463
    • /
    • 2010
  • In this paper, we present an approach to sentence boundary detection for web documents that builds on statistical-based methods and uses rule-based correction. The proposed system uses the classification model learned offline using a training set of human-labeled web documents. The web documents have many word-spacing errors and frequently no punctuation mark that indicates the end of sentence boundary. As sentence boundary candidates, the proposed method considers every Ending Eomis as well as punctuation marks. We optimize engine performance by selecting the best feature, the best training data, and the best classification algorithm. For evaluation, we made two test sets; Set1 consisting of articles and blog documents and Set2 of web community documents. We use F-measure to compare results on a large variety of tasks, Detecting only periods as sentence boundary, our basis engine showed 96.5% in Set1 and 56.7% in Set2. We improved our basis engine by adapting features and the boundary search algorithm. For the final evaluation, we compared our adaptation engine with our basis engine in Set2. As a result, the adaptation engine obtained improvements over the basis engine by 39.6%. We proved the effectiveness of the proposed method in sentence boundary detection.

The Analysis of Public Awareness about Literary Therapy by Utilizing Big Data Analysis - The aspects of convergence literature and statistics (빅데이터 분석을 통한 문학치료의 대중적 인지도 분석 - 국문학과 통계학의 융합적 측면)

  • Choi, Kyoung-Ho;Park, Jeong-Hye
    • Journal of Digital Convergence
    • /
    • v.13 no.4
    • /
    • pp.395-404
    • /
    • 2015
  • This study is exploring objective awareness of literary therapy by consideration of popular perception about literary therapy through analysis of big data. The purpose of this study is the deduction of meaning information through analysis in the viewpoint of big data at online social network service(SNS) about 'literary therapy'. Accordingly, the main way of research became content analysis of keyword linked to literary therapy by utilizing opinion mining method related to text mining. The study mainly grasped 'literary therapy' and analyzed 'bibliotherapy' comparatively. The period of study was from Oct. 10th to Nov. 10th, 2014(during 30 days), and SNS such as blog or twitter became the subject of search. Through the result of study analysis, the conclusion that the spread of literary therapeutic prospect, structural harmony of literary therapeutic field, and the solidity of perceptional axis about literary therapy are needed can be drawn. This study is worthwhile because it can investigate popular awareness about literary therapy and can suggest alternative for invigoration of literary therapy.

Analysis of the Time-dependent Relation between TV Ratings and the Content of Microblogs (TV 시청률과 마이크로블로그 내용어와의 시간대별 관계 분석)

  • Choeh, Joon Yeon;Baek, Haedeuk;Choi, Jinho
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.163-176
    • /
    • 2014
  • Social media is becoming the platform for users to communicate their activities, status, emotions, and experiences to other people. In recent years, microblogs, such as Twitter, have gained in popularity because of its ease of use, speed, and reach. Compared to a conventional web blog, a microblog lowers users' efforts and investment for content generation by recommending shorter posts. There has been a lot research into capturing the social phenomena and analyzing the chatter of microblogs. However, measuring television ratings has been given little attention so far. Currently, the most common method to measure TV ratings uses an electronic metering device installed in a small number of sampled households. Microblogs allow users to post short messages, share daily updates, and conveniently keep in touch. In a similar way, microblog users are interacting with each other while watching television or movies, or visiting a new place. In order to measure TV ratings, some features are significant during certain hours of the day, or days of the week, whereas these same features are meaningless during other time periods. Thus, the importance of features can change during the day, and a model capturing the time sensitive relevance is required to estimate TV ratings. Therefore, modeling time-related characteristics of features should be a key when measuring the TV ratings through microblogs. We show that capturing time-dependency of features in measuring TV ratings is vitally necessary for improving their accuracy. To explore the relationship between the content of microblogs and TV ratings, we collected Twitter data using the Get Search component of the Twitter REST API from January 2013 to October 2013. There are about 300 thousand posts in our data set for the experiment. After excluding data such as adverting or promoted tweets, we selected 149 thousand tweets for analysis. The number of tweets reaches its maximum level on the broadcasting day and increases rapidly around the broadcasting time. This result is stems from the characteristics of the public channel, which broadcasts the program at the predetermined time. From our analysis, we find that count-based features such as the number of tweets or retweets have a low correlation with TV ratings. This result implies that a simple tweet rate does not reflect the satisfaction or response to the TV programs. Content-based features extracted from the content of tweets have a relatively high correlation with TV ratings. Further, some emoticons or newly coined words that are not tagged in the morpheme extraction process have a strong relationship with TV ratings. We find that there is a time-dependency in the correlation of features between the before and after broadcasting time. Since the TV program is broadcast at the predetermined time regularly, users post tweets expressing their expectation for the program or disappointment over not being able to watch the program. The highly correlated features before the broadcast are different from the features after broadcasting. This result explains that the relevance of words with TV programs can change according to the time of the tweets. Among the 336 words that fulfill the minimum requirements for candidate features, 145 words have the highest correlation before the broadcasting time, whereas 68 words reach the highest correlation after broadcasting. Interestingly, some words that express the impossibility of watching the program show a high relevance, despite containing a negative meaning. Understanding the time-dependency of features can be helpful in improving the accuracy of TV ratings measurement. This research contributes a basis to estimate the response to or satisfaction with the broadcasted programs using the time dependency of words in Twitter chatter. More research is needed to refine the methodology for predicting or measuring TV ratings.

Development of Beauty Experience Pattern Map Based on Consumer Emotions: Focusing on Cosmetics (소비자 감성 기반 뷰티 경험 패턴 맵 개발: 화장품을 중심으로)

  • Seo, Bong-Goon;Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.179-196
    • /
    • 2019
  • Recently, the "Smart Consumer" has been emerging. He or she is increasingly inclined to search for and purchase products by taking into account personal judgment or expert reviews rather than by relying on information delivered through manufacturers' advertising. This is especially true when purchasing cosmetics. Because cosmetics act directly on the skin, consumers respond seriously to dangerous chemical elements they contain or to skin problems they may cause. Above all, cosmetics should fit well with the purchaser's skin type. In addition, changes in global cosmetics consumer trends make it necessary to study this field. The desire to find one's own individualized cosmetics is being revealed to consumers around the world and is known as "Finding the Holy Grail." Many consumers show a deep interest in customized cosmetics with the cultural boom known as "K-Beauty" (an aspect of "Han-Ryu"), the growth of personal grooming, and the emergence of "self-culture" that includes "self-beauty" and "self-interior." These trends have led to the explosive popularity of cosmetics made in Korea in the Chinese and Southeast Asian markets. In order to meet the customized cosmetics needs of consumers, cosmetics manufacturers and related companies are responding by concentrating on delivering premium services through the convergence of ICT(Information, Communication and Technology). Despite the evolution of companies' responses regarding market trends toward customized cosmetics, there is no "Intelligent Data Platform" that deals holistically with consumers' skin condition experience and thus attaches emotions to products and services. To find the Holy Grail of customized cosmetics, it is important to acquire and analyze consumer data on what they want in order to address their experiences and emotions. The emotions consumers are addressing when purchasing cosmetics varies by their age, sex, skin type, and specific skin issues and influences what price is considered reasonable. Therefore, it is necessary to classify emotions regarding cosmetics by individual consumer. Because of its importance, consumer emotion analysis has been used for both services and products. Given the trends identified above, we judge that consumer emotion analysis can be used in our study. Therefore, we collected and indexed data on consumers' emotions regarding their cosmetics experiences focusing on consumers' language. We crawled the cosmetics emotion data from SNS (blog and Twitter) according to sales ranking ($1^{st}$ to $99^{th}$), focusing on the ample/serum category. A total of 357 emotional adjectives were collected, and we combined and abstracted similar or duplicate emotional adjectives. We conducted a "Consumer Sentiment Journey" workshop to build a "Consumer Sentiment Dictionary," and this resulted in a total of 76 emotional adjectives regarding cosmetics consumer experience. Using these 76 emotional adjectives, we performed clustering with the Self-Organizing Map (SOM) method. As a result of the analysis, we derived eight final clusters of cosmetics consumer sentiments. Using the vector values of each node for each cluster, the characteristics of each cluster were derived based on the top ten most frequently appearing consumer sentiments. Different characteristics were found in consumer sentiments in each cluster. We also developed a cosmetics experience pattern map. The study results confirmed that recommendation and classification systems that consider consumer emotions and sentiments are needed because each consumer differs in what he or she pursues and prefers. Furthermore, this study reaffirms that the application of emotion and sentiment analysis can be extended to various fields other than cosmetics, and it implies that consumer insights can be derived using these methods. They can be used not only to build a specialized sentiment dictionary using scientific processes and "Design Thinking Methodology," but we also expect that these methods can help us to understand consumers' psychological reactions and cognitive behaviors. If this study is further developed, we believe that it will be able to provide solutions based on consumer experience, and therefore that it can be developed as an aspect of marketing intelligence.