• Title/Summary/Keyword: Block-Adaptive Matching

Search Result 87, Processing Time 0.021 seconds

A Temporal Error Concealment Method Based on Edge Adaptive Masking (에지정보에 적응적인 마스크를 이용한 시간방향 오류 은닉 방법)

  • Kim Yong-Woo;Lim Chan;Kang Hyun-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.3 s.303
    • /
    • pp.91-98
    • /
    • 2005
  • In this paper, we propose a temporal error concealment method based on the edge adaptive masking. In the method, four regions around the corrupted block - top, bottom, left, and right - are defined and the edge features of the regions are extracted by applying an edge operator for each direction. The size of a mask for the boundary matching is determined by the edge information, which can be considered as a criterion to measure the activity of the boundary region. In other words, it is determined such that the size of the mask is proportional to the amount of edge-component extracted from each region in order to yield the higher reliability on boundary matching. This process is equivalent to applying weights depending on the edge features, which leads the improved motion vector. In experiments, it is verified that the proposed method outperforms the conventional methods in terms of image quality, and then its merits and demerits are discussed.

Fast Motion Estimation Algorithm Using Importance of Search Range and Adaptive Matching Criterion (탐색영역의 중요도와 적응적인 매칭기준을 이용한 고속 움직임 예측 알고리즘)

  • Choi, Hong-Seok;Kim, Jong-Nam;Jeong, Shin-Il
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.4
    • /
    • pp.129-133
    • /
    • 2015
  • In this paper, we propose a fast motion estimation algorithm which is important in the performance of video encoding. Conventional fast motion estimation algorithms have serious problems of low prediction quality in some frames and still much computation. In the paper, we propose an algorithm that reduces unnecessary computations only, while keeping prediction quality almost similar to that of the full search. The proposed algorithm uses distribution of probability of motion vectors, divides search range into several groups according to its importance, and applies adaptive block matching criteria for each group of search range. The proposed algorithm takes only 3~5% in computational amount and has decreased prediction quality about 0~0.01dB compared with the fast full search algorithm.

Adaptive spatio-temporal deinterlacting algorithm based on bi-directional motion compensation (양방향 움직임 기반의 시공간 적응형 디인터레이싱 기법)

  • Lee, Sung-Gyu;Lee, Dong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.4
    • /
    • pp.418-428
    • /
    • 2002
  • In this paper, we propose a motion-adaptive de-interlacing method using motion compensated interpolation. In a conventional motion compensated method, a simple pre-filter such as line averaging is applied to interpolate missing lines before the motion estimation. However, this method causes interpolation error because of inaccurate motion estimation and compensation. In the proposed method, EBMF(Edge Based Median Filter) as a pre-filter is applied, and new matching method, which uses two same-parity fields and opposite-parity field as references, is proposed. For further improvement, motion correction filter is proposed to reduce the interpolation error caused by incorrect motion. Simulation results show that the proposed method provides better performance than existing methods.

The Design of Repeated Motion on Adaptive Block Matching Algorithm in Real-Time Image (실시간 영상에서 반복적인 움직임에 적응한 블록정합 알고리즘 설계)

  • Kim Jang-Hyung;Kang Jin-Suk
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.3
    • /
    • pp.345-354
    • /
    • 2005
  • Since motion estimation and motion compensation methods remove the redundant data to employ the temporal redundancy in images, it plays an important role in digital video compression. Because of its high computational complexity, however, it is difficult to apply to high-resolution applications in real time environments. If we have a priori knowledge about the motion of an image block before the motion estimation, the location of a better starting point for the search of an exact motion vector can be determined to expedite the searching process. In this paper presents the motion detection algorithm that can run robustly about recusive motion. The motion detection compares and analyzes two frames each other, motion of whether happened judge. Through experiments, we show significant improvements in the reduction of the computational time in terms of the number of search steps without much quality degradation in the predicted image.

  • PDF

Forward Motion Compensation Content-Adaptive Irregular Meshes (컨텐트 적응적 비정형 메쉬를 이용한 전방향 움직임보상)

  • Jeon, Byeungwoo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.2
    • /
    • pp.149-159
    • /
    • 2001
  • The conventional block-based motion prediction suffers, especially in low bit-rate video application, from shortcomings such as blocking artifacts of motion field and unstable motion estimation. To overcome the deficiency, this paper proposes one method of adopting a new motion compensation scheme based on the irregular triangular mesh structure while keeping the current block-based DCT coding structure of H.263 as much as possible. To represent the reconstructed previous frame using minimal number of control points, the proposed method designs content-adaptive irregular triangular meshes, and then, estimate the motion vector of each control point using the affine transformation-based matching. The predicted current frame is obtained by applying the affine transformation to each triangular mesh. Experiment with the several real video sequences shows improvement both in objective and subjective picture quality over the conventional block-based H.263 method.

  • PDF

A Prediction Search Algorithm by using Temporal and Spatial Motion Information from the Previous Frame (이전 프레임의 시공간 모션 정보에 의한 예측 탐색 알고리즘)

  • Kwak, Sung-Keun;Wee, Young-Cheul;Kimn, Ha-Jine
    • Journal of the Korea Computer Graphics Society
    • /
    • v.9 no.3
    • /
    • pp.23-29
    • /
    • 2003
  • There is the temporal correlation of the video sequence between the motion vector of current block and the motion vector of the previous block. If we can obtain useful and enough information from the motion vector of the same coordinate block of the previous frame, the total number of search points used to find the motion vector of the current block may be reduced significantly. In this paper, we propose the block-matching motion estimation using an adaptive initial search point by the predicted motion information from the same block of the previous frame. And the first search point of the proposed algorithm is moved an initial point on the location of being possibility and the searching process after moving the first search point is processed according to the fast search pattern. Simulation results show that PSNR(Peak-to-Signal Noise Ratio) values are improved UP to the 1.05dB as depend on the image sequences and improved about 0.33~0.37dB on an average. Search times are reduced about 29~97% than the other fast search algorithms. Simulation results also show that the performance of the proposed scheme gives better subjective picture quality than the other fast search algorithms and is closer to that of the FS(Full Search) algorithm.

  • PDF

Low Complexity Motion Estimation Based on Spatio - Temporal Correlations (시간적-공간적 상관성을 이용한 저 복잡도 움직임 추정)

  • Yoon Hyo-Sun;Kim Mi-Young;Lee Guee-Sang
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.9
    • /
    • pp.1142-1149
    • /
    • 2004
  • Motion Estimation(ME) has been developed to reduce temporal redundancy in digital video signals and increase data compression ratio. ME is an Important part of video encoding systems, since it can significantly affect the output quality of encoded sequences. However, ME requires high computational complexity, it is difficult to apply to real time video transmission. for this reason, motion estimation algorithms with low computational complexity are viable solutions. In this paper, we present an efficient method with low computational complexity based on spatial and temporal correlations of motion vectors. The proposed method uses temporally and spatially correlated motion information, the motion vector of the block with the same coordinate in the reference frame and the motion vectors of neighboring blocks around the current block in the current frame, to decide the search pattern and the location of search starting point adaptively. Experiments show that the image quality improvement of the proposed method over MVFAST (Motion Vector Field Adaptive Search Technique) and PMVFAST (Predictive Motion Vector Field Adaptive Search Technique) is 0.01~0.3(dB) better and the speedup improvement is about 1.12~l.33 times faster which resulted from lower computational complexity.

A Fast Motion Estimation Algorithm using Probability Distribution of Motion Vector and Adaptive Search (움직임벡터의 확률분포와 적응적인 탐색을 이용한 고속 움직임 예측 알고리즘)

  • Park, Seong-Mo;Ryu, Tae-Kyung;Kim, Jong-Nam
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.2
    • /
    • pp.162-165
    • /
    • 2010
  • In the paper, we propose an algorithm that significantly reduces unnecessary computations, while keeping prediction quality almost similar to that of the full search. In the proposed algorithm, we can reduces only unnecessary computations efficiently by taking different search patterns and error criteria of block matching according to distribution probability of motion vectors. Our algorithm takes only 20~30% in computational amount and has decreased prediction quality about 0~0.02dB compared with the fast full search of the H.264 reference software. Our algorithm will be useful to real-time video coding applications using MPEG-2/4 AVC standards.

A time recursive approach for do-interlacing using improved ELA and motion compensation based on hi-directional BMA (개선된 ELA와 양방향 BMA기반의 움직임 보상을 이용한 재귀적 디인터레이싱)

  • 변승찬;변정문;김경환
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.87-97
    • /
    • 2004
  • In this paper, we propose an algorithm for interlaced-to-progressive conversion by the weighted summation of the information collected from spatial do-interlacing method, in which the weighted edge based line average is applied, and the temporal method in which the motion compensation is employed by using hi-directional BMA (block matching algorithm). We employed time-recursive and motion adaptive processing as motion detection is involved. Also, a median filter is used to deal with limitation of the linear summation in which only an intermediate of values being involved is determined. The main goal of the approach is to overcome the shortcomings of each of the do-interlacing techniques without significant increment of the computational complexity, and the proposed method is apt to implement in hardware for real-time processing.

SAR Image De-noising Based on Residual Image Fusion and Sparse Representation

  • Ma, Xiaole;Hu, Shaohai;Yang, Dongsheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3620-3637
    • /
    • 2019
  • Since the birth of Synthetic Aperture Radar (SAR), it has been widely used in the military field and so on. However, the existence of speckle noise makes a good deal inconvenience for the subsequent image processing. The continuous development of sparse representation (SR) opens a new field for the speckle suppressing of SAR image. Although the SR de-noising may be effective, the over-smooth phenomenon still has bad influence on the integrity of the image information. In this paper, one novel SAR image de-noising method based on residual image fusion and sparse representation is proposed. Firstly we can get the similar block groups by the non-local similar block matching method (NLS-BM). Then SR de-noising based on the adaptive K-means singular value decomposition (K-SVD) is adopted to obtain the initial de-noised image and residual image. The residual image is processed by Shearlet transform (ST), and the corresponding de-noising methods are applied on it. Finally, in ST domain the low-frequency and high-frequency components of the initial de-noised and residual image are fused respectively by relevant fusion rules. The final de-noised image can be recovered by inverse ST. Experimental results show the proposed method can not only suppress the speckle effectively, but also save more details and other useful information of the original SAR image, which could provide more authentic and credible records for the follow-up image processing.