In this paper, we propose a method of decision on blurring for business card images using block classification. In the proposed method, an input image is partitioned into 8${\times}$8 blocks and each block is classified into character block or background block using a block energy calculated in DCT domain. Whether the input image is blurring or non-blurring is determined using a ratio of low frequency energy and high frequency energy in DCT domain. Experimental results show that the proposed block classification classifies block well and the proposed decision on blurring decides well for various business card images.
In this paper, we proposed a postprocessing algorithm for quantization effects reduction in block coded images using the block classification and adaptive filtering. The proposed method consists of classification, adaptive inter-block filtering, and intra-block filtering. First, each block is classified into one of seven classes based on the characteristics of 8${\times}$8 DCT coefficients. Then each block boundary is filtered by adaptive inter-block filters according to the block classification. Finally for blocks which are classified into edge block, intra-block filtering is peformed. Experimental results show that the proposed method gives better results than the conventional methods from both a subjective and an objective viewpoint.
Communications for Statistical Applications and Methods
/
제16권4호
/
pp.675-686
/
2009
In this paper, it will be assumed that there are two distinct populations which are multivariate normal with equal covariance matrix. We also assume that the two populations are equally likely and the costs of misclassification are equal. The classification rule depends on the situation when the training samples include missing values or not. We consider the bootstrap confidence intervals for classification error rate when a block of observation is missing.
본 논문에서는 공간 명암도 의존 행렬을 이용하여 문서영상의 다양한 블록들을 상세하게 분류해 낼 수 있는 방법을 제안하였다. 제안한 블록분류 방법에서는 먼저 명암도 문서영상을 이진화하여 평활화 기법을 적용함으로써 명암도 영상의 질감특징을 이용하여 분할하는 것보다 신속하게 블록을 분할하고 동시에 그 위치정보도 구할 수 있도록 하였다. 분할된 각 블록들의 공간 명암도 의존 행렬로부터 문서블록들의 7가지 질감특징을 구하고, 이를 정규화한 다음 역전파 신경회로망를 이용하여 문서블록들을 분류하였다. 문서블록들을 큰 문자, 중간 문자, 작은 문자, 표, 그래픽 및 사진 등 여섯 가지 유형으로 상세 분류하였다. 또한 명암도 문서영상의 2차 통계 질감특징을 얻기 위해 공간 명암도 의존 행렬을 구할 때, 기존의 사진과 같은 일반 영상분할에서와는 달리, 문서블록 고유의 특징이 잘 반영되도록 하였다. 즉, 분할된 각 블록을 하나의 마스크로 정하여 수평 한 방향의 공간 명암도 의존 행렬을 구함으로써 고속의 질감특징추출과 상세 블록분류가 가능하도록 하였다.
The purpose of this study is to categorize Commercial area by identifying characteristics of blocks and coding them in order to segment use zoning in Commercial area. The study was conducted as follows. Data from building register, cadastral map, statistics annual report are utilized to identify the physical environment of the block. four types used as code under the physical environment classification code which are classification code of physical environment, detail usage, volume ratio, and height type are set, and combine the classification codes sorted by the four types of code. Through the physical environment classification codes, there are currently 37 different block characteristics of the Old downtown Commercial area. Diversity is not reflected. There are only Central commercial area of regulations in Old downtown commercial areas that are uniformly managed. For the renewal, management and development that can occur in the near future, it is necessary to segment of use district in the commercial area. Consider the current situation and future development direction for the management of sustainable commercial areas. Management is required using physical environment classification codes. It is meaningful that it can be maintained, managed and developed in accordance with the characteristics of each block.
This paper presents a new edge-protection algorithm and its very large scale integration (VLSI) architecture for block artifact reduction. Unlike previous approaches using block classification, our algorithm utilizes pixel classification to categorize each pixel into one of two classes, namely smooth region and edge region, which are described by the edge-protection maps. Based on these maps, a two-step adaptive filter which includes offset filtering and edge-preserving filtering is used to remove block artifacts. A pipelined VLSI architecture of the proposed deblocking algorithm for HD video processing is also presented in this paper. A memory-reduced architecture for a block buffer is used to optimize memory usage. The architecture of the proposed deblocking filter is verified on FPGA Cyclone II and implemented using the ANAM 0.25 ${\mu}m$ CMOS cell library. Our experimental results show that our proposed algorithm effectively reduces block artifacts while preserving the details. The PSNR performance of our algorithm using pixel classification is better than that of previous algorithms using block classification.
We propose a novel approach to classify fingerprints using the extracted adaptive core block for improving classification performance of incomplete fingerprints in this paper. We compute representative directions from fingerprint images by the block unit and learn horizontal and vertical Markov models by deciding the center position of a fingerprint image based on the expert knowledge. The center block of a test image is the block has the highest probability after comparing the Markov model with $11{\times}11$ blocks. The proposed approach can effectively classify incomplete fingerprints using the optimal center block.
본 논문에서는 블록 분류와 적응적 필터링을 이용하여 블록 기반 부호화에서의 양자화 잡음을 제거하는 후처리 방법을 제안하였다. 제안한 방법에서는 블록 분류, 적응적인 블록 간 필터링, 및 블록 내 필터링의 단계로 이루어진다. 먼저, 각 블록을 8x8 DCT 계수 분포에 따라 7개의 클래스로 분류하고, 인접한 두 클래스 정보에 따라 적응적인 블록 간 필터링을 수행한다. 그리고 에지 블록으로 분류된 블록에 대하여 에지맵을 이용한 블록 내 필터링을 수행한다. 실험결과로부터 제안한 방법이 기존의 방법에 비하여 객관적 화질 측면에서는 유사하지만, 주관적 화질 측면에서 보다 우수함을 확인하였다.
This paper introduces a new local feature extraction method and image matching method for the localization and classification of targets. Proposed method is based on the block-by-block projection associated with directional pattern of blocks. Each pattern has its own eigen-vertors called as CEBs(Classified Eigen-Blocks). Also proposed block-based image matching method is robust to translation and occlusion. Performance of proposed feature extraction and matching method is verified by the face localization and FLIR-vehicle-image classification test.
본 논문에서는 블록 기반으로 부호화된 영상에 대하여 블록 분류 (block classification)와 다층 퍼셉트론 (multi-layer perceptron, MLP) 모델을 이용한 적응적 블록화 현상 제거 알고리듬을 제안하였다. 제안한 방법에서는 각 블록을 DCT 계수의 분포 특성에 따라 네 개의 클래스로 분류한 다음, 인접한 두 블록의 클래스 정보에 따라 수평 및 수직 블록 경계 영역에 대하여 적응적으로 신경망 필터를 적용한다. 즉, 평탄한 영역, 수평 방향 에지 영역, 수직 방향 에지 영역, 및 복잡한 영역에 대하여 각각 서로 다른 신경망 필터를 수평 및 수직 방향으로 적용하여 블록화 현상을 제거한다. 모의 실험 결과를 통하여 제안한 방법이 객관적 화질 및 주관적 화질 측면에서 기존의 방법보다 그 성능이 우수함을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.