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Abstract
In this paper, it will be assumed that there are two distinct populations which are multivariate normal with
equal covariance matrix. We also assume that the two populations are equally likely and the costs of misclassifica-
tion are equal. The classification rule depends on the situation when the training samples include missing values

or not. We consider the bootstrap confidence intervals for classification error rate when a block of observation is
missing.
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1. Introduction

In discriminant analysis the problem is to classify a p x 1 observation X of unknown origin to one of
several distinct populations using an appropriate classification rule. In this paper it will be assumed
that there are two distinct populations which are multivariate normal with equal covariance matrix.
We also assume that the two populations are equally likely and the costs of misclassification are equal.
The classification rule depends on the situation when the training samples include missing values or

not.
1.1. Discriminant analysis with complete data

If the population #; has density f;(X), i = 1,2, the Bayes procedure (see Section 6.2, Anderson, 1984)
classifies X into 7y if

HX)
) 2 (1.1)

where c is a constant which depends on the prior probabilities and costs of misclassification; otherwise
X is classified into 7r,. In the particular case of two populations being equally likely and the costs of
misclassification being equal, ¢ = 1.

If the populations are multivariate normal with equal covariance matrix, that is 7;: N(u?, %), (1.1)
becomes, after taking logarithm,

X % (,u(” +#(2>)]' y-1 (#a) _u@)) > 0. (1.2
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Then the random variable U = [X — 1/2(uV + u@) 21 (u® — 4@) is distributed as N(A2/2, A?) if X
comes from 7r; and as N(~A?/2, A%) if X comes from 75, where A2 = (u® — @y T-1(u® — @) js the
Mahalanobis squared distance between the two populations. When X comes from 7, the probability
of misclassification is P(2|1) = Pr(U < 0|X € m;) = ®(-A/2).

Similarly, the probability of misclassifying X from m, to m; is

P(112) =Pr(U 2 01X € m) = q)(_g)

Then the optimal error rate(see. Equation 11-27, Johnson and Wichern, 2002) is defined as
1 A
@=z (PRI + PA12)] = 5 (1.3)

In practice the population parameters are usually unknown. Then independent random samples
{Xi’),Xé'), -, X, ®) of sizes n;, i = 1,2, are taken from the two populations. When the training
samples do not contain missing values, Anderson (1951) suggested the method of simple substitution
of X for 4 and § for X in (1.2), where X and S are the usual unbiased estimators of u®, i = 1,2
and X respectively. The statistic

W [x v xw)]’ 571 (20 - X0)

is called Anderson’s classification statistic. The error rate corresponding to this classification rule is
called the unconditional error rate, which is y = 1/2[Pr(W < 0|X € n;) + Pr(W 2 0|X € m,)].

Since the exact expression for the unconditional error rate is very complicated, the conditional er-
ror rate is considered by assuming X, X® and § fixed. The conditional probability of misclassifying
an observation X from x; into 7, by W is

1 (X(I)J,X(z))’ s-1 (X(D_X(Z))_ﬂ(l)’s—l (X(l)_;za))

Py =Pr(W<0X®, X®, 5 Xem) =@
\/(X(l) - X@) s-155-1 (R0 - x@)

Similarly the conditional probability of misclassifying an observation X from , into ; by W is
u¥s-1 (X(l) _Xa))_% (Xa) +X(2))' s-! (g(l) _Xa))

\/(X(U — X)) $-155-1 (X0 - @)

Py=Pr(W 20K, X, 5; X ¢ m) =@

Hence the conditional error rate (see Section 6.3, Anderson, 1984) is
, 1
Y = E(Pl + P2). (14)

It is clear that the expectation of the conditional error rate is simply the unconditional error rate.
Three error rates are used to judge the performance of a classification rule. Since the three error
rates, i.e., the optimal error rate, the unconditional error rate and the conditional error rate, are all
functions of unknown parameters, they need to be estimated. Estimation of error rates has received
considerable attention since the 1930s. There are several methods for estimating the error rate given
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in the literature. The plug-in (Fisher, 1936) estimator is obtained by substituting unbiased estimates,
XD, X® and § for @, u® and T into (1.4). Then the estimator for y* in (1.4) is given by

5 =<I)(—2), (15)

2
where D? = (XD — X®@y§-1(XD — X@) js the sample analog of Mahalanobis squared distance A2,
We can obtain the same expression,

é=®(-2) (1.6)

by substituting the estimate D for A directly into the optimal error rate @ in (1.3). Hence this plug-in
estimator can be used to estimate both the optimal error rate and conditional error rate.

1.2. Discriminant analysis with incomplete data

When the training samples contain incomplete observation vectors, there are several methods of deal-
ing with missing values in discriminant analysis. One is to ignore these incomplete observation vectors
in the construction of a classification rule. But this method is usually ineffective since information
has been lost. Other methods (Chan and Dunn, 1972, 1974; Bohannon and Smith, 1975; Twedt and
Gill, 1992; Anderson, 1957) incorporate these incomplete observation vectors in the construction of
the classification mile and the estimation of the error rate.

In this paper we consider a special pattern which contains a block of missing observations. Instead
of estimating the parameters, we construct two different discriminant functions from the complete
data and incomplete data, respectively, and then a linear combination of these two linear discriminant
functions is used to obtain the classification rule.

Let us partition the p X 1 observation X as follows.

_pl

where Y is a k x 1 vector and Z is a (p ~ k) x 1 vector (1 < k < p). Suppose random samples of sizes
m;, containing no missing values,

y®
Z{l) L} i=1,2;j=],2,-‘-,mi,
i

B _
X, =

are available from

U]
‘ Hy Ly I
N p(l)’z :N[ i },[
p( ) P ,uﬁ) Zyz Ezz
and random samples of sizes n; — m;, which contain only the first k-components Y;i)(kxl), i=1,2;
Jj = m;+1,... . n;, are available from Nk(;é,"),Ew). We denote by Xﬁi), i=1,2j=1,...,m, the

complete observations, and by Yg), i=1,2; j=1,...,n, the incomplete observations. Hence the data
have the special pattern of missing values where a block of variables is missing on n;—m; observations,
and the remaining observations are all complete. We can construct two linear discriminant functions.
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The first linear discriminant function is based on the observations, in), i=12j=1,...,m. We
have

W, = (X - X 57! [X - % (X0 + X(Z))] ,

. . )
where X® = 1/m; PN X;’) =% ],

B A
7Y = mi i Y9, i=12  Z9= mi izﬁ."’, i=12, (1.7
Jj= Jj=
2 m O _ 7O (y® _ 20OY
Sxxzz (Xj X )(X] X ), Ve =my +my — 2.

Vx

The second linear discriminant function is based on the incomplete observations, Y;i)(kxl), i=1,2;
J=1,2,...,n. Wehave W, = (Y1 - Y@y s 1y - 1/2(F© + ¥@)], where

e 1 pe —(i
¥O = = [m¥} + o - m) Y] (1.8)
n;
1 <
= Z YO, i=12,
J=m+1
2 (YD _ @)y — oY
Syyzz (j )V(J ), Vy:n1+n2—2.
i=1 j=1 Y

Now we combine the two linear discriminant functions and construct the classification rule which is
a linear combination of W, and W,, namely

We=cW,+(Q-0W,, 0<c<l. 1.9)

We call W, the linear combination classification statistic. An advantage of W, is that it is easy to
use. The observation X is classified into my if W, = ¢W, + (1 — o)W, = 0; otherwise it is classified
into m,. This classification procedure is called the linear combination classification procedure. This
classification procedure depends on the value of ¢. The choice of ¢ will be discussed later.

Let W, = a’X + b, where a, , = (XU - X@y§7, b = ~1/2XD - XPYsHEXD + XP).
Also let Wy, = d'Y + e, where d’ = (YU — Y@yS; 1, e = —1/2(YV — YOyS (TP + ¥P). Then

W, = c(a’1Y+a'zZ+b)+(l —0)d'Y+e)=AY+BZ+F =HX+F,where A = ca;(1-c)d, B = ca,

F=cb+(1—-c)e H= [ B’(‘“’;)”l ] Since W, = H’X + F is a linear combination of the random variable
p-kyx

X given XU, X@ g, ¥ ¥® 5§  and X is distributed as N,(u, ), hence w, is distributed as
N(H'u" + F, H'EH), i = 1,2. Then the conditional probability of misclassifying an observation X
from my by 7 is W, given by

7, (D)
_M) (1.10)

Bi= q)(
! H'sH
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similarly,
Hu® + F
,8*=d>(——— . (1.1
2 VH'ZH
Hence the conditional error rate, with equal prior probability, is defined as
% 1 % o
g = 3 B +B5). (1.12)

Using the linear combination classification statistic in (1.9), X is classified to ; if W, > 0; otherwise
it is classified to zr;. Given the training samples, the conditional error rate 8* depends on the value of
¢. The best value of ¢ may be determined so that the conditional error rate is minimized. However,
the minimization process is very tedious and intractable. Hence we propose to use the operational c*
which is given by

-1
(&)
()

my

() D ()

iy niy ay a2

*

Cc =

where D? = (XU - X@ys-1(X® - X®), p? = (Y - }_’(2))’5;1(}_’“) )

From the simulations, Chung ef al. (2000) showed that the linear combination classification is
better than Anderson’s procedure (Anderson, 1957), the EM algorithm (Dempster ef al., 1977) and
Hocking and Smith procedure (Hocking and Smith, 1968) as the proportion of missing observation
gets larger.

In this paper, we propose to construct confidence intervals of the error rates using a bootstrap
method. Bootstrap confidence intervals of those are compared to the jackknife confidence interval
derived by Dorvio (1992). Then the real data sets illustrate the application of the bootstrap method.

2. Bootstrap Confidence Interval for the Error Rate When Training Samples Do
Not Contain Missing Values

The usual confidence intervals are based on an asymptotic approximation that can be quite inaccu-
rate in practice (see Buckland, 1983; Diciccio and Efron, 1996). However, the bootstrap confidence
intervals can be applied to more realistic situations.

In this section, we consider the bootstrap confidence interval for the optimal error rate in (1.3),
when the data contain no missing values. Then the bootstrap confidence interval of the error rate will
be extended to the case that the data consist of missing observation in Section 3. Another method to
construct a confidence interval for ¢ is jackknife method which is described as follows.

2.1. Jackknife confidence interval

Dorvlo (1992) considered an interval estimator based on the jackknife method of estimating the op-
timal error rate for W, when the training samples have no missing values. He proposed the jackknife
estimator &, defined as

n

i =nf ()2 D (B). e
=1
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where n = nj + ny, n; and n, are the sample sizes taken from populations 7; : N(u'D,Z) and 7, :
N(u®, ) respectively, and
ﬁj=X1]’—X2, j=1,...,n1,
=X1—'X2j, j=n1+l,...,n,

- '*HIXI—X]' -1 n

1_]_ nl—l ’ ]_ * s Tty

- n2X2—X‘ .
X2j:72__Tj’ ]=n1+1,...,n,

)= <I>[—%(ﬁ‘z-1[z)%],
f(/?j)=¢[—%(ﬁ;z“ﬁj)%], j=1...m

where @ denotes the cumulative standard normal distribution. Here X; iG=1...,n)and X, Jj =
ny + 1,...,n) denote the sample means obtained by deleting the j* observation (j = 1,...,n). Let
§1, and S,; denote the corresponding covariance matrices based on (n — 3) degrees of freedom, and

S denotes the covariance matrix based on (n — 2) degrees of freedom. Also let
&y=nf(B)-m-DfB), j=1....n

Then we can replace Z~! in the expression of f(8) and fB) by S ' and §7! (i=1,j=1,...,n13i =
2,j = ny + 1,...,n) respectively, since those tend to ™! in the limit. Dorvlo (1992) concluded that
the interval estimate of o could be written as

2 2
n Sy A~ n ~ a
. (@ -a) JZFI (a1 - &)

-ty an—1) " Ath nn-1 |’

where t,,/> denotes the 100(1—7/2) percentage point of the ¢-distribution with n—1 degrees of freedom.

2.2. Bootstrap confidence interval

Now we consider the bootstrap confidence interval for the optimal error rate @ in (1.3), when the
training samples contain no missing values. The bootstrap method is a resampling technique using
Monte Carlo simulation (Efron 1982). In our situation, independent random samples of sizes n; and
n, with replacement are taken from the two training samples respectively. An estimator & of @ based
on the bootstrap sample is obtained by using (1.6). This process is repeated independently a large
number B of times. Then bootstrap confidence interval for ¢ can be obtained from the B values of &*.
Let &Z‘i) denote the i ordered value, so that

Ak Ak Ak
oy S g <7 S Ay

There are several methods to construct the bootstrap confidence interval. We will consider the
percentile method, bias-corrected percentile method, accelerated bias-corrected percentile method
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to construct the confidence interval (Efron, 1982, 1987; Buckland, 1983, 1984, 1985; Hall, 1986a,
1986b; Hinkley, 1988; DiCiccio and Romano, 1988; among others). These three types of 100(1-2m)%
confidence interval are presented as follows:

Percentile method. The confidence interval is given by (&’6_),&2‘”), where r = (B+ Dnpand s =
(B + 1)(1 — 1), both rounded to nearest integer, subjectto r+ s = B + 1.

Bias-corrected percentile method. Suppose Q) <@ <&, where @ is calculated from the original

samples. That is, g of the B bootstrap estimates for « are smaller than &. Define

z, = 0! (%) M = B(22, — 2,) and 7sr = Oz, +27),

where ®(z,) = 1 — 1 and @ denotes the cumulative standard normal distribution. Then the confidence
interval is given by (é:(*j), &&)), where j= (B+ 1)ng, and k = (B + Dingg.

Accelerated bias-corrected percentile method. Define

Zo — Zn Zo + 2y )
=@z + ——" | and qug = Pz, + |,
AL (0 I—a(zo-z,,)) AR (0 1= aGz +27)

where a = 1/6[%2 (&* - &*)*/[X2, (@} — &*)*1/*], which is called the acceleration constant, and &
is the mean of the B bootstrap estimates for ¢%,i=1,..., B.

Then the confidence interval is given by (&Zu)’ &ZI)), where i = (B + Dna, and v = (B + Dnar.
Note that 1745 and 14, become ngg and npy if a equals 0. If zg is zero, then ngp and 17z, become 7.

In order to evaluate the propersties of the confidence interval for ¢, 2 Monte Carlo study is pro-
posed. In this study, bivariate normal random deviates are generated from 7, : N(0,1) and m, :
N([AX,O]/,I) by using subroutine in the International Mathematical and Statistical Library(IMSL),
where A? is the Mahalanobis distance. For each Monte Carlo study, 500 iterations will be obtained. In
each iteration, B = 5000 bootstrap samples are generated. Then the bootstrap confidence intervals for
« are obtained from the B values of &* which is an estimator of @ based on the bootstrap sample by D
method which is suggested by Fisher (1936). In order to construct the bootstrap confidence intervals
for a, we apply Algorithm AS214 given in Buckland (1985). Then the coverage probability and aver-
age length of the confidence intervals are computed. The average length is computed by subtracting
the average lower limit for the confidence interval of conditional error rate from the average upper
limit for it, whose average limit are obtained by taking average of the 500 lower limits and the 500
upper limits respectively. The coverage probability is also considered from the 500 training samples,
in which the conditional error rate is checked whether it is between the lower limit and the upper limit
for each training sample. The coverage probability is obtained by dividing the number covered by
both limits by 500. The bootstrap confidence intervals are compared with the jackknife confidence
interval given in Dorvio (1992) based on the average length and coverage probability.

From the Table 1, we recommend both the bias-corrected percentile method and the jackknife
method to obtain the confidence interval for a in (1.3).

3. Bootstrap Confidence Interval When Training Samples Contain Missing Values

We will extend the bootstrap confidence interval for « to the case that the training samples contain
missing values. We will not consider the jackknife confidence interval in this case since the jackknife
method does not improve the bootstrap method when training samples do not contain missing values.
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Table 1: Comparison of 95% Confidence Interval for o

Optimal A Average Average Coverage
2 ptimal . verage g g g
P " A Error Rate Method Lower Limit Upper Limit Length Prob.
P 0.1685 0.3872 0.2186 89.2
B 0.2028 0.4156 02128 88.8
2 20 1.0 0.3085 A 0.2114 0.4156 0.2042 88.4
J 0.1871 0.4350 0.2479 91.8
P 0.0619 0.2266 0.1647 86.2
B 0.0823 0.2528 0.1705 91.2
2 20 40 0.1587 A 0.0832 0.2529 0.1697 90.0
J 0.0643 0.2517 0.1874 91.0
P 0.2238 0.3670 0.1432 92.8
B 0.2370 0.3804 0.1434 93.2
2 50 1.0 0.3085 A 0.2399 0.3804 0.1405 922
J 0.2319 0.3816 0.1497 93.4
P 0.0968 0.2089 0.1121 92.8
B 0.1063 0.2202 0.1139 95.0
2 50 40 0.1587 A 0.1062 0.2202 0.1140 95.8
J 0.0992 0.2174 0.1182 94.0
P 0.1561 0.3337 0.1775 69.8
B 0.2168 0.3911 0.1743 90.4
5 30 1.0 0.3085 A 0.2239 0.3911 0.1672 90.4
J 0.2043 0.4086 0.2043 94.4
P 0.0591 0.1913 0.1322 76.2
B 0.0925 0.2322 0.1397 92.0
5 30 40 0.1587 A 0.1031 0.2323 0.1292 88.8
J 0.0800 0.2348 0.1548 92.0
P 0.2001 0.3413 0.1412 83.6
B 0.2381 0.3825 0.1444 91.8
5 50 1.0 0.3085 A 0.2400 0.3823 0.1423 91.2
J 0.2313 0.3853 0.1540 94.2
P 0.0840 0.1929 0.1089 85.6
B 0.1060 0.2203 0.1143 92.6
5 50 40 0.1587 A 0.1097 0.2205 0.1108 91.2
J 0.0987 0.2179 0.1192 93.8

* P = percentile method, B = bias-corrected percentile method, A = accelerated bias-corrected percentile method,
J = jackknife method.

We will consider the bootstrap confidence interval for the conditional error rate 8* in (1.12) using W...
The conditional error rate can be estimated by substituting the estimates £, 4@ for Z, u® in (1.10)
and (1.11) respectively. Let 4@ = [Y®,ZOY be the estimate of u® from (1.7) and (1.8). For the

covariance matrices, let
() )

xc Tl a@) &0
0, 80,
be the estimate from the complete observations of sizes m;. Also let ﬁ(i)i be the estimate from the
incomplete observations of sizes n; — m; using only the ¥ observations, i = 1,2. Then we suggest the

combined estimates,

Misipy (B~ Misiy 0
D e
o £t

for 29, i = 1,2. Now the pooled estimate of the covariance matrices is given by



Bootstrap Confidence Intervals of Classification Error Rate for a Block of Missing Observations 683

Table 2: Comparison of 95% Confidence Interval for g*

p=2k=1 Average Average Average Coverage
n m R A2 B Method* Lower Limit Upper Limit Length Prob.
p 0.1009 0.3426 0.2417 64.6
20 10 0.8 1 0.3268 B 0.1538 0.3926 0.2388 84.4
A 0.1626 0.3922 0.2296 65.8
P 0.0447 0.2239 0.1792 79.0
20 10 0.8 4 0.1748 B 0.0827 0.2766 0.1939 92.6
A 0.0914 0.2775 0.1861 76.4
P 0.1479 0.3687 0.2208 79.0
20 18 0.8 1 0.3229 B 0.1902 0.4082 0.2180 93.0
A 0.1937 0.4081 0.2144 78.0
P 0.0599 0.2209 0.1650 80.4
20 18 0.8 4 0.1698 B 0.0877 0.2734 0.1857 92.0
A 0.0934 0.2746 0.1812 78.8
P 0.0717 0.2347 0.1630 88.6
50 20 0.3 4 0.1776 B 0.0883 0.2529 0.1646 93.6
A 0.0978 0.2531 0.1553 87.8
P 0.0882 0.2152 0.1270 87.6
50 20 0.8 4 0.1712 B 0.1091 0.2365 0.1274 94.0
A 0.1108 0.2365 0.1257 87.2
P 0.2232 0.3672 0.1440 89.8
50 46 0.3 1 0.3152 B 0.2404 0.3843 0.1439 94.0
A 0.2406 0.3843 0.1437 89.0
P 0.2215 0.3694 0.1479 89.6
50 46 0.8 1 0.3183 B 0.2364 0.3842 0.1478 93.8
A 0.2367 0.3842 0.1476 87.8

* P = percentile method, B = bias-corrected percentile method, A = accelerated bias-corrected percentile method

A n A n 2
£ L S0, 2 50
ny +np n +np

We will use these estimates in the construction of the bootstrap confidence intervals for the con-
ditional error rate 8* in (1.12) when the training samples contain missing observations. Basically the
same procedure described for « is applied in this situation for getting the three types of the bootstrap
confidence intervals for 8, i.e., the percentile method, the bias-corrected percentile method, and the
accelerated bias-corrected method. In order to evaluate the properties of the confidence intervals for
B, we conduct a similar Monte Carlo study described for the optimal error rate, @ in (1.3).

Basically the same procedure described for « is applied in this situation for getting the three types
of the bootstrap confidence intervals for 8*. We generated bivariate normal random deviates from
7 @ N(O,I) and m, : N([A,, A.], ) by using IMSL subroutines, where A} and A? are Mahalanobis
distance based on the variable Y and the variable Z respectively. Note that

A=A +A? for X =[X.Z], R=A}/A. where 0<R< L.

For each Monte Carlo study, 500 iterations will be obtained. In each iteration, B = 1000 bootstrap
samples are generated.

From the Table 2, the bias-corrected percentile method appears to be resonable compared to those
of the other two methods.
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Table 3: Population 1: Success
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X Xz X3 X4 X5
2.97 420 800 600 497
3.80 330 710 380 563
2.50 270 700 340 510
2.50 400 710 600 563
3.30 280 800 450 543
2.60 310 660 425 507
2.70 360 620 590 537
3.10 220 530 340 543
2.60 350 770 560 580
3.20 360 750 440 577
3.65 440 700 630
3.56 640 520 610
3.00 480 550 560
318 550 630 630
3.84 450 660 630
3.18 410 410 340
343 460 610 560
352 580 580 610
3.09 450 540 570
3.70 420 630 660

X = Undergraduate GPA; X>= GRE Verbal; X3= GRE Quantitative; X;= GRE Analytic; X5 = TOEFL Score
Table 4: Population 2: Failure

X; X X3 Xy X5
3.75 250 730 460 513
3.11 320 760 610 560
3.00 360 720 525 540
2.60 370 780 500 500
3.50 300 630 380 507
3.50 390 580 370 587
3.10 380 770 500 520
2.30 370 640 200 520
2.85 340 800 540 517
3.50 460 750 560 597
3.15 630 540 600
293 350 690 620
3.20 480 610 480
2.76 630 410 530
3.00 550 450 500
3.28 510 690 730
3.11 640 720 520
3.42 440 580 620
3.00 350 430 480
2.67 480 700 670

X) = Undergraduate GPA; X,= GRE Verbal; X3= GRE Quantitative; X4= GRE Analytic; X5 = TOEFL Score

4. Numerical Example

Application of the bootstrap method to estimate the error rate, 8* in (1.12) is illustrated by using real
data sets. They are given by the Admissions Office at the University of Texas at Arlington. The data
sets contain two populations, which are shown in Table 3 and Table 4. One population is the Success
Group that the students receive their masters’s degree. The other population is the Failure Group that
they do not complete their master’s degree. For each population, there are 10 foreign students and 10



Bootstrap Confidence Intervals of Classification Error Rate for a Block of Missing Observations 685

United States students. Each foreign student has 5 variables which are x; = undergraduate GPA, x,
= GRE verbal, x3 = GRE quantitative, x4, = GRE analytic and x5 = TOEFL score. For each United
States student, one variable, x5 = TOEFL score is missing.

Using this data set, we obtain the discriminant function

W.=cW, + (1 - OW,

where W, = a’X+b,a’ = [~1.9957 —0.0170 —0.0004 0.0034 0.02421, b = -2.5252, W, =d'X +e,
d’ =10.5302 —0.0042 -0.0023 0.2406], ¢ = 0.2846, ¢ = 0.7532.

For this example, we generate 300 bootstrap samples to estimate 8*, and 1,000 bootstrap samples
to construct the bootstrap confidence interval for 8*. The result of using ¢* = 0.7532 is that the
bootstrap estimate of B* is 0.3435. The 95% confidence interval of 8* is (0.2721, 0.4609) which is
obtained by the bias-corrected percentile method.

5. Conclusion

- Discriminant analysis is a multivariate technique concerned with classifying a p x 1 observation X
to one of several distinct populations using an appropriate classification rule. The classification rule
depends on the situation when the training samples include missing values or not. In this paper, we
consider the situation that the training samples contain incomplete observation vectors which have a
pattern of missing data; i.e., all missing values occur on the same variables. In this situation, we use the
discriminant function which is a linear combination of two well defined Fisher’s linear discriminant
functions. The performance of a classification procedure is evaluated by its error rate which depends
on unknown parameters. For the situation, we consider the bootstrap confidence interval for the
conditional error rate 8 in (1.12) using W,.. We recommend the bias-corrected method. A numerical
example is given and it is shown that the linear combination classification procedure is easy to use for
the incomplete case.
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