• 제목/요약/키워드: Block Sparse Signal

검색결과 12건 처리시간 0.019초

Block Sparse Signals Recovery via Block Backtracking-Based Matching Pursuit Method

  • Qi, Rui;Zhang, Yujie;Li, Hongwei
    • Journal of Information Processing Systems
    • /
    • 제13권2호
    • /
    • pp.360-369
    • /
    • 2017
  • In this paper, a new iterative algorithm for reconstructing block sparse signals, called block backtracking-based adaptive orthogonal matching pursuit (BBAOMP) method, is proposed. Compared with existing methods, the BBAOMP method can bring some flexibility between computational complexity and reconstruction property by using the backtracking step. Another outstanding advantage of BBAOMP algorithm is that it can be done without another information of signal sparsity. Several experiments illustrate that the BBAOMP algorithm occupies certain superiority in terms of probability of exact reconstruction and running time.

Block Sparse Signals Recovery Algorithm for Distributed Compressed Sensing Reconstruction

  • Chen, Xingyi;Zhang, Yujie;Qi, Rui
    • Journal of Information Processing Systems
    • /
    • 제15권2호
    • /
    • pp.410-421
    • /
    • 2019
  • Distributed compressed sensing (DCS) states that we can recover the sparse signals from very few linear measurements. Various studies about DCS have been carried out recently. In many practical applications, there is no prior information except for standard sparsity on signals. The typical example is the sparse signals have block-sparse structures whose non-zero coefficients occurring in clusters, while the cluster pattern is usually unavailable as the prior information. To discuss this issue, a new algorithm, called backtracking-based adaptive orthogonal matching pursuit for block distributed compressed sensing (DCSBBAOMP), is proposed. In contrast to existing block methods which consider the single-channel signal reconstruction, the DCSBBAOMP resorts to the multi-channel signals reconstruction. Moreover, this algorithm is an iterative approach, which consists of forward selection and backward removal stages in each iteration. An advantage of this method is that perfect reconstruction performance can be achieved without prior information on the block-sparsity structure. Numerical experiments are provided to illustrate the desirable performance of the proposed method.

저전력 무선 생체신호 모니터링을 위한 심전도/근전도/뇌전도의 압축센싱 연구 (Study on Compressed Sensing of ECG/EMG/EEG Signals for Low Power Wireless Biopotential Signal Monitoring)

  • 이욱준;신현철
    • 전자공학회논문지
    • /
    • 제52권3호
    • /
    • pp.89-95
    • /
    • 2015
  • 무선 헬스케어 서비스에서 생체신호 모니터링 시스템의 전력소모를 효과적으로 감소시킬 수 있는 압축센싱 기법을 다양한 생체신호에 적용하여 압축률을 비교하였다. 압축센싱 기법을 이용하여 일반적인 심전도, 근전도, 뇌전도 신호의 압축과 복원을 수행하였고, 이를 통해 복원된 신호와 원신호를 비교함으로써, 압축센싱의 유효성을 판단하였다. 유사랜덤 행렬을 사용하여 실제 생체신호를 압축하였으며, 압축된 신호는 Block Sparse Bayesian Learning(BSBL) 알고리즘을 사용하여 복원하였다. 가장 산제된 특성을 가지는 근전도 신호의 최대 압축률이 10배로 확인되어 가장 높았으며, 심전도 신호의 최대 압축률은 5배였다. 가장 산제된 특성이 작은 뇌전도 신호의 최대 압축률은 4배였다. 연구된 심전도, 근전도, 뇌전도 신호의 압축률은 향후 압축센싱을 적용한 무선 생체신호 모니터링 회로 및 시스템 개발시 유용한 기초자료로 활용될 수 있다.

Distributed Video Compressive Sensing Reconstruction by Adaptive PCA Sparse Basis and Nonlocal Similarity

  • Wu, Minghu;Zhu, Xiuchang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권8호
    • /
    • pp.2851-2865
    • /
    • 2014
  • To improve the rate-distortion performance of distributed video compressive sensing (DVCS), the adaptive sparse basis and nonlocal similarity of video are proposed to jointly reconstruct the video signal in this paper. Due to the lack of motion information between frames and the appearance of some noises in the reference frames, the sparse dictionary, which is constructed using the examples directly extracted from the reference frames, has already not better obtained the sparse representation of the interpolated block. This paper proposes a method to construct the sparse dictionary. Firstly, the example-based data matrix is constructed by using the motion information between frames, and then the principle components analysis (PCA) is used to compute some significant principle components of data matrix. Finally, the sparse dictionary is constructed by these significant principle components. The merit of the proposed sparse dictionary is that it can not only adaptively change in terms of the spatial-temporal characteristics, but also has ability to suppress noises. Besides, considering that the sparse priors cannot preserve the edges and textures of video frames well, the nonlocal similarity regularization term has also been introduced into reconstruction model. Experimental results show that the proposed algorithm can improve the objective and subjective quality of video frame, and achieve the better rate-distortion performance of DVCS system at the cost of a certain computational complexity.

Fast Binary Block Inverse Jacket Transform

  • Lee Moon-Ho;Zhang Xiao-Dong;Pokhrel Subash Shree;Choe Chang-Hui;Hwang Gi-Yean
    • Journal of electromagnetic engineering and science
    • /
    • 제6권4호
    • /
    • pp.244-252
    • /
    • 2006
  • A block Jacket transform and. its block inverse Jacket transformn have recently been reported in the paper 'Fast block inverse Jacket transform'. But the multiplication of the block Jacket transform and the corresponding block inverse Jacket transform is not equal to the identity transform, which does not conform to the mathematical rule. In this paper, new binary block Jacket transforms and the corresponding binary block inverse Jacket transforms of orders $N=2^k,\;3^k\;and\;5^k$ for integer values k are proposed and the mathematical proofs are also presented. With the aid of the Kronecker product of the lower order Jacket matrix and the identity matrix, the fast algorithms for realizing these transforms are obtained. Due to the simple inverse, fast algorithm and prime based $P^k$ order of proposed binary block inverse Jacket transform, it can be applied in communications such as space time block code design, signal processing, LDPC coding and information theory. Application of circular permutation matrix(CPM) binary low density quasi block Jacket matrix is also introduced in this paper which is useful in coding theory.

Reduced Complexity Signal Detection for OFDM Systems with Transmit Diversity

  • Kim, Jae-Kwon;Heath Jr. Robert W.;Powers Edward J.
    • Journal of Communications and Networks
    • /
    • 제9권1호
    • /
    • pp.75-83
    • /
    • 2007
  • Orthogonal frequency division multiplexing (OFDM) systems with multiple transmit antennas can exploit space-time block coding on each subchannel for reliable data transmission. Spacetime coded OFDM systems, however, are very sensitive to time variant channels because the channels need to be static over multiple OFDM symbol periods. In this paper, we propose to mitigate the channel variations in the frequency domain using a linear filter in the frequency domain that exploits the sparse structure of the system matrix in the frequency domain. Our approach has reduced complexity compared with alternative approaches based on time domain block-linear filters. Simulation results demonstrate that our proposed frequency domain block-linear filter reduces computational complexity by more than a factor of ten at the cost of small performance degradation, compared with a time domain block-linear filter.

Off-grid direction-of-arrival estimation for wideband noncircular sources

  • Xiaoyu Zhang;Haihong Tao;Ziye, Fang;Jian Xie
    • ETRI Journal
    • /
    • 제45권3호
    • /
    • pp.492-504
    • /
    • 2023
  • Researchers have recently shown an increased interest in estimating the direction-of-arrival (DOA) of wideband noncircular sources, but existing studies have been restricted to subspace-based methods. An off-grid sparse recovery-based algorithm is proposed in this paper to improve the accuracy of existing algorithms in low signal-to-noise ratio situations. The covariance and pseudo covariance matrices can be jointly represented subject to block sparsity constraints by taking advantage of the joint sparsity between signal components and bias. Furthermore, the estimation problem is transformed into a single measurement vector problem utilizing the focused operation, resulting in a significant reduction in computational complexity. The proposed algorithm's error threshold and the Cramer-Rao bound for wideband noncircular DOA estimation are deduced in detail. The proposed algorithm's effectiveness and feasibility are demonstrated by simulation results.

OFDM 시스템에서 측정 벡터 결합을 이용한 채널 추정 방법 (Sparse Channel Estimation Based on Combined Measurements in OFDM Systems)

  • 민병천;박대영
    • 한국통신학회논문지
    • /
    • 제41권1호
    • /
    • pp.1-11
    • /
    • 2016
  • 본 논문에서는 Orthogonal Frequency Division Multiplexing(OFDM) 시스템에서 압축센싱을 이용하는 채널추정기법을 연구한다. 압축센싱은 측정벡터의 크기가 성능에 영향을 주는데, OFDM에서는 channel delay spread가 큰 경우에 압축센싱 기법을 사용하는데 제약이 된다. 본 논문에서는 채널추정 오차를 줄이기 위해서 OFDM data block에 pilot information을 추가해 측정벡터의 길이를 증가시켜 성능을 향상시킨다. 제안하는 방식이 성긴 신호의 위치를 찾을 확률을 높이고 압축센싱의 신호 복원 성능을 높인다. 모의실험을 통해 제안하는 방식이 기존 방식보다 신호 복원 능력이 더 우수함을 확인한다.

블록기반 압축센싱 복원을 위한 수렴 복잡도 저감 (Convergence Complexity Reduction for Block-based Compressive Sensing Reconstruction)

  • 박영균;심혁재;전병우
    • 방송공학회논문지
    • /
    • 제19권2호
    • /
    • pp.240-249
    • /
    • 2014
  • 압축센싱 이론에 따르면 표본화 될 신호가 일련의 조건을 만족하는 성긴 신호라면 나이퀴스트 표본화주파수보다 적은 수의 측정 샘플들만 가지고도 원 신호를 완벽하게 복원할 수 있다. 그러나 압축센싱 이론을 실제 영상에 활용하기 위해서는, 신호 복원에 필요한 계산 복잡도와 메모리 요구량을 줄일 필요가 있다. 이런 관점에서 블록압축센싱(Block-based Compressive Sensing)에 기반한 Smooth Projected Landweber (BCS-SPL) 방법이 개발되었지만, 이 또한 복원과정의 계산 복잡도가 여전히 큰 문제가 있다. 본 논문에서는 기존의 BCS-SPL 복원 알고리즘의 수렴을 보다 빠르게 하기 위하여, 반복복원 중지조건, 허용 오차, 수렴 조절 인자를 개선한 수렴 복잡도 저감 방법을 제시한다. 제시한 방법은 기존 BCS-SPL 방법보다 낮은 수의 반복복원 횟수내로 수렴하면서도 동시에 복원 화질도 개선시키는 실험 결과를 보였다.

블록기반 압축센싱을 위한 율 할당 방법 (Rate Allocation for Block-based Compressive Sensing)

  • NguyenQuangHong;DinhKhanhQuoc;NguyenaVietAnh;TrinhChienVan;박영현;전병우
    • 방송공학회논문지
    • /
    • 제20권3호
    • /
    • pp.398-407
    • /
    • 2015
  • 희소성이 높은 신호를 압축센싱을 할 경우 기존의 Nyquist/Shannon 이론을 바탕으로 하는 샘플링 방법 보다 낮은 측정율 만으로도 신호의 복원이 가능하기 때문에 이를 활용한 많은 응용 연구가 이루어지고 있다. 영상신호의 경우 특히 블록기반 압축센싱 기법이 주로 고려되고 있는데, 대부분의 경우 측정 영역에서의 공간적 유사도가 동일하다는 가정 하에, 각 블록에 동일한 측정율을 할당하여 왔다. 이를 개선하기 위해, 본 논문에서는 프레임 내의 각 블록에 대하여 경계선 정보를 구하고, 각각의 특성에 따르는 적응적 샘플링율 기법을 제안한다. 제안하는 방법은 측정영역에서의 블록 간 유사도를 구해서 경계선 정보를 많이 포함하는 블록일수록 많은 측정율을 할당한다. 실험 결과, 자연영상에 대해 제안하는 적응적 율 할당 기법은 고정 측정율을 사용한 기존 방법에 비해 객관적 (최대 3.29 dB 향상) 및 주관적 화질이 뛰어나다는 것을 보여준다.