• Title/Summary/Keyword: Block Clustering

Search Result 65, Processing Time 0.021 seconds

Magnifying Block Diagonal Structure for Spectral Clustering (스펙트럼 군집화에서 블록 대각 형태의 유사도 행렬 구성)

  • Heo, Gyeong-Yong;Kim, Kwang-Baek;Woo, Young-Woon
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.9
    • /
    • pp.1302-1309
    • /
    • 2008
  • Traditional clustering methods, like k-means or fuzzy clustering, are prototype-based methods which are applicable only to convex clusters. On the other hand, spectral clustering tries to find clusters only using local similarity information. Its ability to handle concave clusters has gained the popularity recent years together with support vector machine (SVM) which is a kernel-based classification method. However, as is in SVM, the kernel width plays an important role and has a great impact on the result. Several methods are proposed to decide it automatically, it is still determined based on heuristics. In this paper, we proposed an adaptive method deciding the kernel width based on distance histogram. The proposed method is motivated by the fact that the affinity matrix should be formed into a block diagonal matrix to generate the best result. We use the tradition Euclidean distance together with the random walk distance, which make it possible to form a more apparent block diagonal affinity matrix. Experimental results show that the proposed method generates more clear block structured affinity matrix than the existing one does.

  • PDF

Analysis Framework using Process Mining for Block Movement Process in Shipyards (조선 산업에서 프로세스 마이닝을 이용한 블록 이동 프로세스 분석 프레임워크 개발)

  • Lee, Dongha;Bae, Hyerim
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.6
    • /
    • pp.577-586
    • /
    • 2013
  • In a shipyard, it is hard to predict block movement due to the uncertainty caused during the long period of shipbuilding operations. For this reason, block movement is rarely scheduled, while main operations such as assembly, outfitting and painting are scheduled properly. Nonetheless, the high operating costs of block movement compel task managers to attempt its management. To resolve this dilemma, this paper proposes a new block movement analysis framework consisting of the following operations: understanding the entire process, log clustering to obtain manageable processes, discovering the process model and detecting exceptional processes. The proposed framework applies fuzzy mining and trace clustering among the process mining technologies to find main process and define process models easily. We also propose additional methodologies including adjustment of the semantic expression level for process instances to obtain an interpretable process model, definition of each cluster's process model, detection of exceptional processes, and others. The effectiveness of the proposed framework was verified in a case study using real-world event logs generated from the Block Process Monitoring System (BPMS).

Color Image Quantization Using Local Region Block in RGB Space (RGB 공간상의 국부 영역 블럭을 이용한 칼라 영상 양자화)

  • 박양우;이응주;김기석;정인갑;하영호
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1995.06a
    • /
    • pp.83-86
    • /
    • 1995
  • Many image display devices allow only a limited number of colors to be simultaneously displayed. In displaying of natural color image using color palette, it is necessary to construct an optimal color palette and map each pixel of the original image to a color palette with fast. In this paper, we proposed the clustering algorithm using local region block centered one color cluster in the prequantized 3-D histogram. Cluster pairs which have the least distortion error are merged by considering distortion measure. The clustering process is continued until to obtain the desired number of colors. Same as the clustering process, original color image is mapped to palette color via a local region block centering around prequantized original color value. The proposed algorithm incorporated with a spatial activity weighting value which is smoothing region. The method produces high quality display images and considerably reduces computation time.

An efficient Video Dehazing Algorithm Based on Spectral Clustering

  • Zhao, Fan;Yao, Zao;Song, Xiaofang;Yao, Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3239-3267
    • /
    • 2018
  • Image and video dehazing is a popular topic in the field of computer vision and digital image processing. A fast, optimized dehazing algorithm was recently proposed that enhances contrast and reduces flickering artifacts in a dehazed video sequence by minimizing a cost function that makes transmission values spatially and temporally coherent. However, its fixed-size block partitioning leads to block effects. The temporal cost function also suffers from the temporal non-coherence of newly appearing objects in a scene. Further, the weak edges in a hazy image are not addressed. Hence, a video dehazing algorithm based on well designed spectral clustering is proposed. To avoid block artifacts, the spectral clustering is customized to segment static scenes to ensure the same target has the same transmission value. Assuming that edge images dehazed with optimized transmission values have richer detail than before restoration, an edge intensity function is added to the spatial consistency cost model. Atmospheric light is estimated using a modified quadtree search. Different temporal transmission models are established for newly appearing objects, static backgrounds, and moving objects. The experimental results demonstrate that the new method provides higher dehazing quality and lower time complexity than the previous technique.

Color image quantization considering distortion measure of local region block on RGB space (RGB 공간상의 국부 영역 블록의 왜곡척도를 고려한 칼라 영상 양자화)

  • 박양우;이응주;김경만;엄태억;하영호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.4
    • /
    • pp.848-854
    • /
    • 1996
  • Many image display devices allow only a limited number of colors to be simultaneously displayed. in disphaying of natural color image using color palette, it is necessary to construct an optimal color palette and the optimal mapping of each pixed of the original image to a color from the palette. In this paper, we proposed the clustering algorithm using local region block centered one color cluster in the prequantized 3-D histogram. Cluster pairs which have the least distortion error are merged by considering distortion measure. The clustering process is continued until to obtain the desired number of colors. The same as the clustering process, original color value. The proposed algorithm incroporated with a spatial activity weighting value which is reflected sensitivity of HVS quantization errors in smoothing region. This method produces high quality display images and considerably reduces computation time.

  • PDF

A Model for Developing Urban Innovation Clusters

  • Morse, Sidney
    • World Technopolis Review
    • /
    • v.2 no.2
    • /
    • pp.81-95
    • /
    • 2013
  • This paper seeks to build on previous work conducted by Porter, Devol, Florida, Bahrami and Evans, Wennberg and Lindqvist, and others contained in the literature, to construct a new way of looking at innovation cluster development. It seeks to describe the key elements contained in the research that serve as building blocks for innovation clustering, adding analysis dimensions that aim to further illuminate understanding of this process. It compares those building block characteristics to the innovation topography of U.S. urban centers, to shed light on a new framework through which urban innovation cluster formation can be considered. It identifies three building block analysis categories: 1) Technological Capability and Capacity (TCC); 2) Intellectual Propulsion Capacity (IPC); and 3) Structural Creative Inspiration (SCI). These three pillars form the architecture for creation of a Strategic Innovation Network (SIN), upon which clustering can be systematically analysed and built. The purpose of the SIN is to optimally organize and connect all available resources that include physical, financial, and human, such that innovation clustering is inspired, encouraged, nurtured, and ultimately constructed as fully functioning socio-economic organisms that provide both local and regional benefits. It is designed to aid both private enterprise and public policy leaders in their strategic planning considerations, and to enhance urban economic development opportunities.

Clustering Routing Algorithms In Wireless Sensor Networks: An Overview

  • Liu, Xuxun;Shi, Jinglun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.7
    • /
    • pp.1735-1755
    • /
    • 2012
  • Wireless sensor networks (WSNs) are becoming increasingly attractive for a variety of applications and have become a hot research area. Routing is a key technology in WSNs and can be coarsely divided into two categories: flat routing and hierarchical routing. In a flat topology, all nodes perform the same task and have the same functionality in the network. In contrast, nodes in a hierarchical topology perform different tasks in WSNs and are typically organized into lots of clusters according to specific requirements or metrics. Owing to a variety of advantages, clustering routing protocols are becoming an active branch of routing technology in WSNs. In this paper, we present an overview on clustering routing algorithms for WSNs with focus on differentiating them according to diverse cluster shapes. We outline the main advantages of clustering and discuss the classification of clustering routing protocols in WSNs. In particular, we systematically analyze the typical clustering routing protocols in WSNs and compare the different approaches based on various metrics. Finally, we conclude the paper with some open questions.

Multiple Texture Image Recognition with Unsupervised Block-based Clustering (비교사 블록-기반 군집에 의한 다중 텍스쳐 영상 인식)

  • Lee, Woo-Beom;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.327-336
    • /
    • 2002
  • Texture analysis is an important technique in many image understanding areas, such as perception of surface, object, shape and depth. But the previous works are intend to the issue of only texture segment, that is not capable of acquiring recognition information. No unsupervised method is basased on the recognition of texture in image. we propose a novel approach for efficient texture image analysis that uses unsupervised learning schemes for the texture recognition. The self-organization neural network for multiple texture image identification is based on block-based clustering and merging. The texture features used are the angle and magnitude in orientation-field that might be different from the sample textures. In order to show the performance of the proposed system, After we have attempted to build a various texture images. The final segmentation is achieved by using efficient edge detection algorithm applying to block-based dilation. The experimental results show that the performance of the system Is very successful.

A File Clustering Algorithm for Wear-leveling (마모도 평준화를 위한 File Clustering 알고리즘)

  • Lee, Taehwa;Cha, Jaehyuk
    • Journal of Digital Contents Society
    • /
    • v.14 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • Storage device based on Flash Memory have many attractive features such as high performance, low power consumption, shock resistance, and low weight, so they replace HDDs to a certain extent. An Storage device based on Flash Memory has FTL(Flash Translation Layer) which emulate block storage devices like HDDs. A garbage collection, one of major functions of FTL, effects highly on the performance and the lifetime of devices. However, there is no de facto standard for new garbage collection algorithms. To solve this problem, we propose File Clustering Algorithm. File Clustering Algorithm respect to update page from same file at the same time. So, these are clustered to same block. For this mechanism, We propose Page Allocation Policy in FTL and use MIN-MAX GAP to guarantee wear leveling. To verify the algorithm in this paper, we use TPC Benchmark. So, The performance evaluation reveals that the proposed algorithm has comparable result with the existing algorithms(No wear leveling, Hot/Cold) and shows approximately 690% improvement in terms of the wear leveling.

Cause Diagnosis Method of Semiconductor Defects using Block-based Clustering and Histogram x2 Distance (블록 기반 클러스터링과 히스토그램 카이 제곱 거리를 이용한 반도체 결함 원인 진단 기법)

  • Lee, Young-Joo;Lee, Jeong-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.9
    • /
    • pp.1149-1155
    • /
    • 2012
  • In this paper, we propose cause diagnosis method of semiconductor defects from semiconductor industrial images. Our method constructs feature database (DB) of defect images. Then, defect and input images are subdivided by uniform block. And the block similarity is measured using histogram kai-square distance after color histogram calculation. Then, searched blocks in each image are merged into connected objects using clustering. Finally, the most similar defect image from feature DB is searched with the defect cause by measuring cluster similarity based on features of each cluster. Our method was validated by calculating the search accuracy of n output images having high similarity. With n = 1, 2, 3, the search accuracy was measured to be 100% regardless of defect categories. Our method could be used for the industrial applications.