• Title/Summary/Keyword: Block Algorithms

Search Result 604, Processing Time 0.023 seconds

Blocking artefact noise reduction using block division (블록 나눔을 사용한 블로킹 아티팩트 잡음 감소)

  • Cha, Seong Won;Shin, Jae Ho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.1
    • /
    • pp.47-53
    • /
    • 2008
  • Blocking artefact noise is necessarily happened in compressed images using block-coded algorithms such as JPEC compressing algorithm. This noise is more recognizable especially in highly compressed images. In this paper, an algorithm is presented for reduction of blocking artefact noise using block division. Furthermore, we also mention about the median filter which is often used in image processing.

Fault Simulator for Domino CMOS Circuits (Domino CMOS 회로의 고장 시뮬레이터)

  • Park, D.G.;Lee, J.H.;Lee, H.J.;Lim, I.C.
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1516-1520
    • /
    • 1987
  • This paper proposes fault simulation algorithms for Domino CMOS circuits, The inputs having fanouts are described correctly in the algorithms by modeling the functional block in the Domino CMOS circuits as Modified dependency matrix. The proposed algorithms generate easily the test sequence which can detect the s-a-O, s-a-I, stuckopen faults in the Domino CMOS circuits.

  • PDF

Quantum Circuit Implementation of the LED Block Cipher with Compact Qubit (최적의 큐빗수를 만족하는 LED 블록암호에 대한 양자 회로 구현)

  • Min-ho Song;Kyung-bae Jang;Gyeong-ju Song;Won-woong Kim;Hwa-Jeong Seo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.3
    • /
    • pp.383-389
    • /
    • 2023
  • The development of quantum computers and the emergence of quantum algorithms such as Shor's algorithm and Grover's algorithm pose a significant threat to the security of existing cipher systems. Quantum algorithms can efficiently perform mathematical operations that take a long time on traditional computers. This characteristic can significantly reduce the time it takes to break modern cipher systems that rely on mathematical problems. To prepare for quantum attacks based on these algorithms, existing ciphers must be implemented as quantum circuits. Many ciphers have already been implemented as quantum circuits, analyzing quantum resources required for attacks and verifying the quantum strength of the cipher. In this paper, we present quantum circuits for LED lightweight block ciphers and explain each function of quantum circuits. Thereafter, the resources for the LED quantum circuit are estimated and evaluated by comparing them with other lightweight block ciphers.

Fast Motion Estimation Algorithm Based on Thresholds with Controllable Computation (계산량 제어가 가능한 문턱치 기반 고속 움직임 예측 알고리즘)

  • Kim, Jong-Nam
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.2
    • /
    • pp.84-90
    • /
    • 2019
  • Tremendous computation of full search or lossless motion estimation algorithms for video coding has led development of many fast motion estimation algorithms. We still need proper control of computation and prediction quality. In the paper, we suggest an algorithm that reduces computation effectively and controls computational amount and prediction quality, while keeping prediction quality as almost the same as that of the full search. The proposed algorithm uses multiple thresholds for partial block sum and times of counting unchanged minimum position for each step. It also calculates the partial block matching error, removes impossible candidates early, implements fast motion estimation by comparing times of keeping the position of minimum error for each step, and controls prediction quality and computation easily by adjusting the thresholds. The proposed algorithm can be combined with conventional fast motion estimation algorithms as well as by itself, further reduce computation while keeping the prediction quality as almost same as the algorithms, and prove it in the experimental results.

Improved Algorithm for Haplotype Block Partitioning : Application to Human Chromosome 21

  • Na, Kyoung-Rak;Kim, Sang-Jun;Kim, Sung-Kwon
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.229-235
    • /
    • 2003
  • Research of basis technology to construct the human haplotype map is one of active areas in SNP post-genomics research. Identification of haplotype block structure from haplotype data is key step in the haplotype map project. Several algorithms have been proposed for the block identification, including the greedy algorithm, and the dynamic programming based algorithm. This paper analyzed block partitioning method of several algorithm which has been proposed in recent years. HapBlock and HaploBlockFinder are programs used in our experiment.

  • PDF

A study on variable block matching algorithm using differential image and quad tree (차영상과 4진트리 구조를 이용한 가변 블럭정합 알고리즘에 관한 연구)

  • 정일화;이대영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.11
    • /
    • pp.2768-2775
    • /
    • 1996
  • VariableBlock Matching algorithm is effective for the estimation of motion vector at complexor edge region by means of using variable block size with respect to the image block. But since VBM algorithm requires considerable number of operations, to solve this problem, we present an algorithm which uses difference images and quad tree structure, and estimates motion using various fast block matching algorithms.

  • PDF

Modified Feistel Network Block Cipher Algorithm (변형 피스탈 네트워크 블록 암호 알고리즘)

  • Cho, Gyeong-Yeon;Song, Hong-Bok
    • Journal of the Korea Computer Industry Society
    • /
    • v.10 no.3
    • /
    • pp.105-114
    • /
    • 2009
  • In this paper a modified Feistel network 128 bit block cipher algorithm is proposed. The proposed algorithm has a 128, 196 or 256 bit key and it updates a selected 32 bit word from input value whole by deformed Feistel Network structure. Existing of such structural special quality is getting into block cipher algorithms and big distinction. The proposed block cipher algorithm shows much improved software speed compared with international standard block cipher algorithm AES and domestic standard block cipher algorithm SEED and ARIA. It may be utilized much in same field coming smart card that must perform in limited environment if use these special quality.

  • PDF

Interframe interpolation using segmentation of blocks on motion boundary (움직임경계블록의 영역분할을 이용한 프레임간 내삽)

  • 이기동;김동욱;강응관;최종수
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.5
    • /
    • pp.68-74
    • /
    • 1998
  • Block-based interframe interpolation algorithms cause severe block effect because the algorithm interpolates the skipped frame by using block based motion vector. Therefore, in this paper, we propose an algorithm that reduces the block effect in the interpolated frames. First, we propose an algorithm that obtains backward motion vector by using forward motion vector received from the transmitter. In order to predict well covered and uncovered region, backward motion vector is needed as well as forward motion vector. Second, we propose the algorithm which segments the motion boundary blocks into regions and obtains the motion vector of each region from candidates that consist of the motion vectors of neighbor blocks. This algorithm makes it possible that the moving object and the background, in spite of being in the same block, have different motion vectors from each other so that the block effect can be reduced. According to the results of simulation, the proposed algorithm is superior to conventional algorithm in subjective quality a swell as in objective quality.

  • PDF

Ship block assembly modeling based on the graph theory (그래프 이론을 기반으로 한 선박의 블록 어셈블리 모델링)

  • Hag-Jong Jo;Kyu-Yeul Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.2
    • /
    • pp.79-86
    • /
    • 2001
  • This study shows an attempt to generate an assembly sequence and its model for a ship block assembly using the graph theory and graph algorithms. To generate the ship block assembly, we propose four levels of the ship block assembly model such as "geometry mode1", "relational model", "sequential mode1", and "hierarchical model". To obtain the relational model, we used surface and surface intersection algorithm. The sequential model that represents a possible assembly sequence is made by using several graph algorithms from the relational model. The hierarchical model will be constructed from the sequential model in order to represent the block assembly tree and so forth. The purpose of the hierarchical model is to define an assembly tree and to generate the Bill Of Material(BOM). Lastly, the validity of the method proposed in this study is examined with application to ship block assembly models of a single type and double type according to four models mentioned above.

  • PDF

Block Interpolation Search (블록 보간 탐색법)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.157-163
    • /
    • 2017
  • The binary and interpolation search algorithms are the most famous among search area algorithms, the former running in $O(log_2n)$ on average, and the latter in $O(log_2log_2n)$ on average and O(n) at worst. Also, the interpolation search use only the probability of key value location without priori information. This paper proposes another search algorithm, which I term a 'hybrid block and interpolation search'. This algorithm employs the block search, a method by which MSB index of a data is determined as a block, and the interpolation search to find the exact location of the key. The proposed algorithm reduces the search range with priori information and search the reduced range with uninformed situation. Experimental results show that the algorithm has a time complexity of $O(log_2log_2n_i)$, $n_i{\simeq}0.1n$ both on average and at worst through utilization of previously acquired information on the block search. The proposed algorithm has proved to be approximately 10 times faster than the interpolation search on average.