• Title/Summary/Keyword: Blind Signal Estimation

Search Result 54, Processing Time 0.031 seconds

Smart antenna algorithm for CDMA downlink beam-forming (CDMA 하향링크의 빔 성형을 위한 스마트 안테나 알고리즘)

  • Ahn Chijun;Hong Youngmi;Jin Younghwan;Ahn Jaemin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7A
    • /
    • pp.603-610
    • /
    • 2005
  • Beam-forming method based on the estimated channel information at the base station degrade the performance mismatching directional vector in case of systems which Frequency Division Duplex (FDD) center frequency of uplink and downlink are different. Also blind estimation technique which is to obtain directional vector of reverse link through received signal has disadvantage of hardware complexity increase. To solve these problems, in present paper, a smart antenna algorithm which is to improve the beam-forming complexity increase due to user number by appling the spatial fourier transform to be able to beam- forming toward a wanted direction through adjusting a obtained uplink weight function by estimating Angle-of-Arrival (AoA) to the competable form at the downlink is proposed. The proposed algorithm is integrated to the CDMA downlink transmitter and simulations are performed to confirm the performance as frame error rate at the receiver. As a result, the beam forming effect is confirmed and the performance gain with the proposed algorithm is comparable to ordinary smart antenna system.

Blind Channel Estimation through Clustering in Backscatter Communication Systems (후방산란 통신시스템에서 군집화를 통한 블라인드 채널 추정)

  • Kim, Soo-Hyun;Lee, Donggu;Sun, Young-Ghyu;Sim, Issac;Hwang, Yu-Min;Shin, Yoan;Kim, Dong-In;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.81-86
    • /
    • 2020
  • Ambient backscatter communication has a drawback in which the transmission power is limited because the data is transmitted using the ambient RF signal. In order to improve transmission efficiency between transceiver, a channel estimator capable of estimating channel state at a receiver is needed. In this paper, we consider the K-means algorithm to improve the performance of the channel estimator based on EM algorithm. The simulation uses MSE as a performance parameter to verify the performance of the proposed channel estimator. The initial value setting through K-means shows improved performance compared to the channel estimation method using the general EM algorithm.

An Efficient Channel Tracking Method in MIMO-OFDM Systems (MIMO-OFDM에서 효율적인 채널 추적 방식)

  • Jeon, Hyoung-Goo;Kim, Kyoung-Soo;Ahn, Ji-Whan;Serpedin, Erchin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3A
    • /
    • pp.256-268
    • /
    • 2008
  • This paper proposes an efficient scheme to track the time variant channel induced by multi-path Rayleigh fading in mobile wireless Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing (MIMO-OFDM) systems with null sub-carriers. In the proposed method, a blind channel response predictor is designed to cope with the time variant channel. The proposed channel tracking scheme consists of a frequency domain estimation approach that is coupled with a Minimum Mean Square Error (MMSE) time domain estimation method, and does not require any matrix inverse calculation during each OFDM symbol. The main attributes of the proposed scheme are its reduced computational complexity and good tracking performance of channel variations. The simulation results show that the proposed method exhibits superior performance than the conventional channel tracking method [4] in time varying channel environments. At a Doppler frequency of 100Hz and bit error rates (BER) of 10-4, signal-to-noise power ratio (Eb/N0) gains of about 2.5dB are achieved relative to the conventional channel tracking method [4]. At a Doppler frequency of 200Hz, the performance difference between the proposed method and conventional one becomes much larger.

Detection and Absorbed-Dose Estimation of Irradiated Enzyme Powder Using ESR Spectroscopy (ESR Spectroscopy를 이용한 방사선 조사 효소분말의 검지와 흡수선량 예측)

  • Chung, Hyung-Wook;Jeong, Jae-Young;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1159-1163
    • /
    • 1999
  • Along with the increasing demands for food irradiation technology in the food industry, a proper detection means for controlling irradiated foods is required. Enzyme powder, which is permitted to be irradiated in Korea, was subjected to a detection trial by ESR spectroscopy. The high correlation coefficients were observed between the absorbed doses ranging from 2.5 to 15.0 kGy and the corresponding ESR signal intensity, such as $R^2$ = 0.9904 in gamma irradiation and $R^2$ = 0.9696 in electron beam. Pre-established threshold values for both non-irradiated control (1.19) and 2.5 kGy-irradiated samples (6.97 in gamma-ray; 7.36 in electron-beam) were successfully applicable to the detection of 30 coded unknown samples of enzyme powder. The calibration curves obtained from the samples irradiated at 2.5 to 15 kGy were expected to be potentially adopted to estimate absorbed doses ranging front 4 to 7 kGy with a quadratic equation.

  • PDF