• Title/Summary/Keyword: Blending ratio

Search Result 367, Processing Time 0.03 seconds

Experimental Investigation of Impinged Spray Characteristics of Oxygenated fuels Using BOS Method (BOS법을 이용한 함산소 연료들의 충돌분무특성에 관한 실험적 연구)

  • Bang, Seung Hwan
    • Journal of ILASS-Korea
    • /
    • v.25 no.3
    • /
    • pp.111-118
    • /
    • 2020
  • This paper describes the effect of DME, biodiesel blended fuels on the macroscopic spray characteristics in a high pressure diesel injection system using Background Oriented Schlieren (BOS) method. The BOS method for visualization of impingement evaporation sprays to analyze macroscopic spray properties and evolutionary processes. In this work, the blending ratio of DME in the blended fuel are 0, 50, 100% by weight ratio. In order to investigate the macroscopic impinged spray characteristics under the various injection parameters and blending ratio. In this work, a mini-sac type single-hole nozzle injector with nozzle hole was length 0.7 mm and diameter of 0.3 mm was used. According to the result, the spray area of the collision wall increased as the DME mixing ratio increased, and the evolutionary pattern showed a stepwise increase due to the collision effect of the wall. Also, results of impinged spray area were increased according to increasing injection pressure.

Preparation and Characterization of Lignin/Chlorinated Polyvinyl Chloride Blended Fibers for Low-cost Carbon Fiber (저가 탄소섬유용 Lignin/Chlorinated Polyvinyl Chloride 블렌딩 섬유의 제조 및 특성)

  • Jo, Chaehyun;Lee, Sangoh;Kang, Dakyung;Hong, Seonghwa;Kang, Chankyu;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.32 no.2
    • /
    • pp.111-120
    • /
    • 2020
  • In this study, lignin/chlorinated poly(vinyl chloride)(CPVC) blended fibers have been produced for the development of low-cost carbon fiber. Carbon fiber manufacturing was accomplished through stabilization and carbonization process. The lignin/CPVC blended fibers were prepared by wet spinning method. Dimethylacetamid e(DMAc) and cychlohexanone in a ratio of 5:1(wt%) was employed as co-solvent. The ratio of lignin/CPVC was prepared at 0/10, 1/9, 2/8, 3/7, 4/6, and 5/5(wt%). The spinning solution was extruded at a rate of 0.1 to 0.4ml/min according to the blending ratio. The speed of the rollers was the same for all ratios(draw ratio=1). Analysis of fiber cross-section by scanning eletron microscopy(SEM) showed that as the lignin ratio increased in the same coagulation bath and distilled water, the pore size of the spinning fiber decreased. Therefore, the highest tensile strength of the blending fibers was 6.3±1.2MPa at the 5/5 ratio. The carbon fiber also showed the best tensile strength of 120.78±2.43MPa at 5/5 ratio.

Synergistic Effect of Tocopherol, Citric Acid and Sodium Polyphosphate on the Thermal Oxidation of Blending Oil (혼합유(混合油)의 열산화(熱酸化)에 대(對)한 Tocopherol, 구연산 및 인산염(燐酸鹽)의 상승효과)

  • Chang, Hun-Ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.63-70
    • /
    • 1990
  • Influence of mixing ratio of blending oil (rice bran oil : RBD palm olein = 1 : 1, 1 : 4 mixture: w/w) and natural tocopherol, citric acid, and sodium polyphosphate on enhancement of oxidation stability of blending oil under the condition of tap water infulx(1 ml/min/200g oil) were compared by AOM test after heating these system at l80$^{\circ}C$. In addition, the effects of tocopherol, and synergist on oxidition stability were also tested with potato chips fried with blending oil(1 : 4 mixture). The result obtained were as followes; 1. The test of RBD palm olein addition of 50% and 80% against rice bran oil on oxidation stability showed that the higher the palm olein contents in blending oil, the higher the oxidation stability. 2. The test of oxidation stability, adding l00ppm, 200ppm and 400ppm of natural tocopherol in two different types of blending oils, A(1 : 1 mixture) and B(1 : 4 mixture), disclosed that blending oil B was more positively effective, and this trend was superior at 200ppm level particularly, Furthermore, oxidation stability was enhanced remarkably upon addition of 100ppm of natural tocopherol, and 50ppm of citric acid together with 50ppm, 100ppm and 200ppm of sodium polyphosphate in general. Especially, 200ppm of sodium polyphosphate addition induced the most synergetic effect on oxidation stability showing as much as 3 times compare to control. 3. The results of oxidation stability obtained by peroxide value on potato chips fried with blending oil (1:4 mixture} added tocopherol, citric acid and sodium polyphosphate and preserved at $60^{\circ}C$ revealed that addition of tocopherol and 50ppm of citric acid together with 200ppm of sodium polyphosphate treatment was the most synergistic coinciding with AOM test results.

A Study on the Spray and Combustion Characteristics of Diesel-ethanol-biodiesel Blended Fuels in a Diesel Engine (디젤엔진에서 디젤-에탄올-바이오디젤 혼합연료의 분무 및 연소 특성에 관한 연구)

  • Park, Su-Han;Youn, In-Mo;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.76-84
    • /
    • 2010
  • The aim of this study is to analyze the effect of the ethanol blending in diesel-ethanol blended fuels on the spray and combustion characteristics in a common-rail four-cylinder diesel engine. For the analysis of the spray characteristics, the spray images were obtained using a high speed camera with metal-halide lamps. From these spray images, the macroscopic spray characteristics such as the spray tip penetration and spray cone angle were investigated. Also, the combustion characteristics including the combustion pressure and the rate of heat release were studied with the analysis of the exhaust emissions in diesel-ethanol blended fuel driven diesel engine. It can be confirmed from the experiment on spray characteristics of diesel-ethanol blended fuels that the increased ethanol blending ratio induced the decrease of the spray tip penetration after the end of the injection. The spray cone angle slightly increased by the blending of ethanol fuel. In the experiment on atomization characteristics, the ethanol blending caused the improvement of the diesel atomization performance. On the other hand, at the same engine load condition, the increase of the ethanol blending ratio lead to lengthen the ignition delays, and to decrease the peak combustion pressure and the rate of heat release. Totally, the combustion and emission characteristics of ULSD and DE10 showed similar characteristics. However, in the case of DE20, CO and HC rapidly increased, and $NO_x$ decreased. It can be believed that 20% ethanol disturbed the combustion of diesel-ethanol blended fuel due to the low cetane number and evaporation.

Evaluation of Recyclability at Varied Blending Ratios of Gable Top and Aseptic Brick Carton (상온보존팩과 냉장보존팩의 배합비율에 따른 재활용 특성 평가)

  • Seo, Jin Ho;Lee, Tai Ju;Lee, Dong Jin;Lee, Myoung Ku;Ryu, Jeong Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.6
    • /
    • pp.123-129
    • /
    • 2015
  • There are two kinds of cartons for beverage packaging, one is aseptic brick (AB) type and the other is gable top (GT). In this study, AB and GT were used as a raw material of recycled paper to investigate the recyclability at their varied blending ratios. Fiber consistency at pulping decreased as the blending ratio of AB increased. As a result, a lot of fines were generated from AB and flakes from GT increased because shear force in pulper decreased. Bulk of handsheets was more than $2.0cm^3/g$, and ISO brightness decreased as the blending ratio of AB increased. The best condition to recycle beverage cartons is to discriminate each cartons separately because of differences in the composition. However, there are problems such as the limit of the collection system and social costs. Therefore, it is assumed that the blending ratios of AB should be adjusted at less than 20% for effective recycling of beverage cartons.

Characterisation and Co-pyrolytic Degradation of the Sawdust and Waste Tyre Blends to Study the Effect of Temperature on the Yield of the Products

  • Shazali, Erna Rashidah Hj;Morni, Nurul Afiqah Haji;Bakar, Muhammad Saifullah Abu;Ahmed, Ashfaq;Azad, Abul K;Phusunti, Neeranuch;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.205-213
    • /
    • 2021
  • The present study aimed to determine the effect of co-pyrolysis of sawdust biomass and scrap tyre waste employing different blending ratios of sawdust to waste tyre such as 100:0, 75:25, 50:50, 25:75, and 0:100. The thermochemical characterization of feedstocks was carried out by employing the proximate, ultimate analysis, and thermogravimetric (TGA) analyses, calorific values, and scanning electron microscope coupled with energy dispersive x-ray analysis (SEM-EDX) to select the blending ratio having better bioenergy potential amongst the studied ratios. The blending ratio of 25:75 (sawdust to waste tyre) was selected for the co-pyrolysis study in a fixed-bed pyrolysis reactor system based on its solid biofuels properties such as heating value (30.18 MJ/kg), and carbon (71.81 wt%) and volatile matter (63.82 wt%) contents. The pyrolysis temperatures were varied as 500, 600 and 700 ℃ while the other parameters such as heating rate and nitrogen flowrate were maintained at 30 ℃/min and 0.5 L/min respectively. The bio-oil yields as 31.9, 47.1 and 61.2 wt%, bio-char yields as 34.5, 34.2 and 31.4 wt% and gaseous product yields as 33.6, 18.60 and 7.3 wt% at the pyrolysis temperatures of 500, 600 and 700 ℃ respectively were obtained. The blends of sawdust and waste tyres showed the improved energy characteristics which could provide the solution for the beneficial management of sawdust and scrape tyre wastes via co-pyrolysis processing.

A study on exhaust emission characteristics according to operating conditions and butanol blended fuels in a small diesel engine for fishing vessel (소형 어선용 디젤기관의 운전조건과 부탄올 혼합유의 배기 배출물 특성에 관한 연구)

  • KIM, Sang-Am;WANG, Woo-Gyeong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.3
    • /
    • pp.256-263
    • /
    • 2021
  • In this study, blending oils of diesel oil and butanol were used as fuel oil for diesel engine to measure combustion pressure, fuel consumption, air ratio and exhaust gas emission due to various operating conditions such as engine revolution and torque. Using these data, the results of analyzing the engine performance, combustion characteristics and exhaust emission characteristics such as NOx (nitrogen oxides), CO2 (carbon dioxide), CO (carbon monoxide) and soot were as follows. The fuel conversion efficiency at each load was highest when driven in the engine revolution determined by a fixed pitch propeller law. Except 30% butanol blending oil, fuel conversion efficiency of the other fuel oils increased as the load increased. Compared to diesel oil, using 10% and 20% butanol blending oil as fuel oil was advantageous in terms of thermal efficiency, but it did not have a significant impact on the reduction of exhaust gas emissions. On the other hand, future research is needed on the results of the 20% butanol blending oil showing lower or similar levels of smoke concentration and carbon monoxide emission rate other than those types of diesel oil.

Use of Response Surface Methodology for Optimization of Clarified Mixed Apple and Carrot Juice Production (반응표면 분석을 이용한 사과.당근 혼합주스의 청징공정 최적화)

  • Seog, Eun-Ju;Lee, Jun-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.8
    • /
    • pp.1051-1056
    • /
    • 2006
  • Response surface methodology was used to investigate the quality of clarified mixed apple and carrot juices using ultrafitration. Apple and carrot juices were blended at the ratio of 1:3, 1:1, and 3:1. A three-variable, three-level central composite design was employed where the independent variables were the blend ratio, temperature and average transmembrane pressure (ATP). With increasing temperature and pressure, flux linearly increased regardless of blending ratio. Blend juice with 75% apple showed the highest soluble sugar and total sugar content in apple and carrot blend juices. Soluble solid contents were more affected by blending ratio than temperature and ATP. Total sugar contents were greatly affected by temperature; increasing temperature led to higher total sugar content up to $25^{\circ}C$. Higher carrot ratio led to higher vitamin C content. In general, higher acidity was achieved by higher apple content and acidity was increased with increasing temperature. Turbidity increased for all samples as APT increased, with the blending ratio of 1:1 (apple:carrot) showing the highest turbidity. Viscosity was greatly changed in the blending ratio of 3:1 (apple:carrot) juice. The polynomial models developed by RSM were satisfactory to describe the relationships between the studied factors and the responses. Analytical optimization gave $flux=0.216\;L/m^2.h$, soluble $solids=10.39^{\circ}Brix$, total sugar=71.32 mg/mL, vitamin C=315.18 mg%, acidity=7.78 mL, turbidity=0.017, and viscosity=1.44 cp, when using a $temperature=44.97^{\circ}C$, ATP=113.57 kPa, and blend ratio=28.50%.

A Simulation Study on the Gasifier Performance in the Coal/Biomass Mixture (석탄과 바이오매스 혼합공급에 따른 가스화 특성 모사 연구)

  • Wang, Hong-Yue;Shim, Hyun-Min;Kim, Hyung-Taek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.784-787
    • /
    • 2007
  • A process flowsheet simulation model based on ASPEN PLUS was developed to investigate the effect of co-gasification of coal and rice husk on the gasifier performance and pollutant emissions in IGCC power plant. The analyses were done for an 02-blown, pulverized gasifier using coal and rice husk as feedstock, parameter employed the blending ratio of rice husk in coal were investigated. From the simulation results, it was found that gaseous pollutant emissions were reduced substantially with the increase of the blending ratio of rice husk. An optimum range between 15% and 25% rice husk-to-coal ratio was found to be the optimum point in terms of gaseous pollutant emission per energy output for sui fur and nitrogen compounds.

  • PDF

An Experimental Study on the Application of Recycled Aggregate Concrete Using the Demolished High Strength Concrete -Part 2, In the case of hardened concrete- (고강도영역 재생골재 콘크리트의 현장적용을 위한 실험적 연구 -제2보 경화콘크리트 의 성상을 중심으로-)

  • 김규용;최희용;최민수;김진만;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.256-261
    • /
    • 1995
  • Large-scaling recycling of demolished concrete will concrete will contribute not only to the solution of a growing waste disposal problem, it will also help to consweve natural resoures of sand and gravel and to secure future supply of reasonly priced aggregates for building and other construction purposes within large urban areas. Because recycled aggregate particles consits of substantial amount of relatively soft cement paste component, it is less resistant to mechanical actions. With this view in mind, to obtain a reference data for the development of recycling system and to a basic data the guiedline of recycled aggregate concrete construction and engineering properties of recycled aggregate concrete according to the factors, such as blending ratio of recyced aggregete with the natural aggregate, addition to the factors, such as blending ratio of recycled aggregete with the natural aggregate, addition of flyash, water coment ratio.

  • PDF