• Title/Summary/Keyword: Blended cement mortars

Search Result 23, Processing Time 0.026 seconds

Durability Characteristics of Blended Cement Mortars (혼합 시멘트 모르타르의 내구특성)

  • 원종필;이찬민;박찬기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.3
    • /
    • pp.41-49
    • /
    • 2003
  • In this study, durability performance of blended cement mortars is evaluated when various mineral admixtures are used with the cement. A comprehensive evaluation of the effects of mineral admixtures on the mortar performance was made. The properties of fresh and hardened blended mortars investigated include slump flow and compressive strength. The durability characteristics of cement materials incorporating the mineral admixtures under various physical and chemical causes of deterioration was investigated. The laboratory test results indicate that mechanical and durability properties of blended cement mortars have superior performance rather than ordinary cement mortars.

Evaluation on Sulfate Attack Resistance of Cement Matrix (시멘트 경화체의 황산염침식 저항성 평가)

  • 문한영;김홍삼;이승태
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.141-151
    • /
    • 2000
  • Compressive strength, sulfate deterioration factor(SDF) and length change of 5 types of mortars immersed in sodium sulfate solution were observed. As the results of tests, it was found that the sulfate resistance of blended cement mortars were superior to that of portland cement mortars. Pore volume with diameter larger than 0.1 $\mu\textrm{m}$ of 5 types of pastes indicated that the micro-structures of blended cement pastes were denser, due to pozzolan reaction and latent hydraulic properties, than those of portland cement pastes. The XRD, ESEM, EDS and TG analyses demonstrated that the reactants such as ettringite and gypsum were significantly formed in portland cement pastes. Besides, compared with the $Ca(OH)_2$ content of ordinary portland cement pastes immersed in water and sodium sulfate solution, the $Ca(OH)_2$ contents of fly ash blended cement and ground granulated blast-furnace slag cement paste were about 58% and 28% in water, and 55% and 20% in sodium sulfate solution, respectively.

Strength and chloride penetration of Portland cement mortar containing palm oil fuel ash and ground river sand

  • Rukzon, Sumrerng;Chindaprasirt, Prinya
    • Computers and Concrete
    • /
    • v.6 no.5
    • /
    • pp.391-401
    • /
    • 2009
  • This paper presents a study of the strength and chloride penetration of blended Portland cement mortar containing ground palm oil fuel ash (POA) and ground river sand (GS). Ordinary Portland cement (OPC) was partially replaced with POA and GS. Compressive strength, rapid chloride penetration test (RCPT) and chloride penetration depth of mortars were determined. The GS only asserted the packing effect and its incorporation reduced the strength and the resistance to chloride penetration of mortar. The POA asserted both packing and pozzolanic effects. The use of the blend of equal portion of POA and GS also produced high strength mortars, save cost and excellent resistance to chloride penetration owing to the synergic effect of the blend of POA and GS. For chloride depth, the mathematical model correlates well with the experimental results. The computer graphics of chloride depth of the ternary blended mortars are also constructed and can be used to aid the understanding and the proportioning of the blended system.

Effect of elevated temperature on physico-mechanical properties of metakaolin blended cement mortar

  • Morsy, M.S.;Rashad, A.M.;El-Nouhy, H.A.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • An experimental investigation was conducted to evaluate the performance of mortars with and without Metakaolin (MK) exposed to elevated temperatures $200^{\circ}C$, $400^{\circ}C$, $600^{\circ}C$ and $800^{\circ}C$ for two hours. The binder to sand ratio was kept constant (1:5.23). The ordinary Portland cement (OPC) was replaced with MK at 0%, 5%, 10% 20% and 30%. All mixtures were designed to have a flow of $94{\pm}5%$. The compressive strength of mortars before and after exposure to elevated temperature was determined. The formation of various decomposition phases were identified using X-ray diffractometry (XRD) and differential thermal analysis (DTA). The microstructure of the mortars was examined using scanning electron microscope (SEM). Test results indicated that MK improves the compressive strength before and after exposure to elevated temperature and that the 20% cement replacement of MK is the optimum percentage.

Influence of fly ash and GGBFS on the pH value of cement mortar in different curing conditions

  • Shafigh, Payam;Yousuf, Sumra;Ibrahim, Zainah;Alsubari, Belal;Asadi, Iman
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.419-428
    • /
    • 2021
  • The pH of cement-based materials (CBMs) is an important factor for their durability, sustainability, and long service life. Currently, the use of supplementary cementitious materials (SCMs) is becoming mandatory due to economic, environmental, and sustainable issues. There is a decreasing trend in pH of CBMs due to incorporation of SCMs. The determination of numerical values of pH is very important for various low and high volume SCMs blended cement mortars for the better understanding of different defects and durability issues during their service life. In addition, the effect of cement hydration and pozzolanic reaction of SCMs on the pH should be determined at initial and later ages. In this study, the effect of low and high-volume fly ash (FA) and ground granulated ballast furnace slag (GGBFS) cement mortars in different curing conditions on their pH values has been determined. Thermal gravimetric analysis (TGA) was carried out to support the findings from pH measurements. In addition, thermal conductivity (k-value) and strength activity indices of these cement mortars were discussed. The results showed that pH values of all blended cement mortars were less than ordinary Portland cement (OPC) mortar in all curing conditions used. There was a decreasing tendency in pH of all mortars with passage of time. In addition, the pH of cement mortars was not only dependent on the quantity of Ca(OH)2. The effect of adding SCMs on the pH value of cement mortar should be monitored and measured for both short and long terms.

An investigation on the mortars containing blended cement subjected to elevated temperatures using Artificial Neural Network (ANN) models

  • Ramezanianpour, A.A.;Kamel, M.E.;Kazemian, A.;Ghiasvand, E.;Shokrani, H.;Bakhshi, N.
    • Computers and Concrete
    • /
    • v.10 no.6
    • /
    • pp.649-662
    • /
    • 2012
  • This paper presents the results of an investigation on the compressive strength and weight loss of mortars containing three types of fillers as cement replacements; Limestone Filler (LF), Silica Fume (SF) and Trass (TR), subjected to elevated temperatures including $400^{\circ}C$, $600^{\circ}C$, $800^{\circ}C$ and $1000^{\circ}C$. Results indicate that addition of TR to blended cements, compared to SF addition, leads to higher compressive strength and lower weight loss at elevated temperatures. In order to model the influence of the different parameters on the compressive strength and the weight loss of specimens, artificial neural networks (ANNs) were adopted. Different diagrams were plotted based on the predictions of the most accurate networks to study the effects of temperature, different fillers and cement content on the target properties. In addition to the impressive RMSE and $R^2$ values of the best networks, the data used as the input for the prediction plots were chosen within the range of the data introduced to the networks in the training phase. Therefore, the prediction plots could be considered reliable to perform the parametric study.

Evaluation of cement mortars blended with copper alloy slag (구리 합금 슬래그를 혼합한 시멘트 모르타르의 특성)

  • Lee, Jung-Il;Hong, Chang Woo;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.1
    • /
    • pp.39-43
    • /
    • 2015
  • The cement mixtures such as flyash, iron-slag and silica fume have been actively studied in order to increase the quality of concrete. In this study, the grinded copper-slag with different proportion was added to portland cement. The physical properties of the cement mortars, (i.e.) flowability, absorption, compressive strength and flexural strength, were investigated for the potential application to the cement. Also, the influence of the acid on the chemical resistance of the cement mortars with copper-slag was evaluated by monitoring the weight variation of the cement mortars under 5 % sulfuric acid for 28 days.

An Experimental Study on Evaluation of Repair Mortars with CAC (Calcium Aluminate Cement) for Sewer Pipe (하수관거 보수용 CAC 모르타르 성능평가에 대한 실험적 연구)

  • Chung, Jee-Seung;Kang, Weon-Dae
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.4
    • /
    • pp.68-75
    • /
    • 2012
  • The biogenic corrosion of mortars adopted in sewage repair by sulfuric acid-producing bacteria was considered in this paper. Calcium aluminate cement (CAC) was known to resist microbiologically-induced corrosion significantly better than portland and blended portland cement.In this study, CAC as well portland cement mortars were tested as main binder to evaluate the corrosion resistance by the chemical immersion test. Replacement ratios of CAC were changed as 0, 20, 40, 50, 60% of OPC binder and 0, 2, 4, 6% of EVA(Ethylene Vinyl Acetate) were also adopted to increase properties of CAC repair mortars in sewage application. Setting time, compressive strength, acid resistance and adhesive strength were measured for various experiments. As a results of the experiments, the proper formulation of repair mortars was found at 40% of CAC and 4% of EVA. Finally, the CAC mortars adopted in field sewer pipe and were demonstrated to superior in adhesion and workability.

Mathematical model of strength and porosity of ternary blend Portland rice husk ash and fly ash cement mortar

  • Rukzon, Sumrerng;Chindaprasirt, Prinya
    • Computers and Concrete
    • /
    • v.5 no.1
    • /
    • pp.75-88
    • /
    • 2008
  • This paper presents a mathematical model for strength and porosity of mortars made with ternary blends of ordinary Portland cement (OPC), ground rice husk ash (RHA) and classified fly ash (FA). The mortar mixtures were made with Portland cement Type I containing 0-40% FA and RHA. FA and RHA with 1-3% by weight retained on a sieve No. 325 were used. Compressive strength and porosity of the blended cement mortar at the age of 7, 28 and 90 days were determined. The use of ternary blended cements of RHA and FA produced mixes with good strength and low porosity of mortar. A mathematical analysis and two-parameter polynomial model were presented for the strength and porosity estimation with FA and RHA contents as parameters. The computer graphics of strength and porosity of the ternary blend were also constructed to aid the understanding and the proportioning of the blended system.

Effect of Adding Scoria as Cement Replacement on Durability-Related Properties

  • al-Swaidani, Aref Mohamad;Aliyan, Samira Dib
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.2
    • /
    • pp.241-254
    • /
    • 2015
  • A lot of reinforced concrete (RC) structures in Syria went out of service after a few years of construction. This was mainly due to reinforcement corrosion or chemical attack on concrete. The use of blended cements is growing rapidly in the construction industry due to economical, ecological and technical benefits. Syria is relatively rich in scoria. In the study, mortar/concrete specimens were produced with seven types of cement: one plain Portland cement (control) and six blended cements with replacement levels ranging from 10 to 35 %. Rapid chloride penetration test was carried in accordance with ASTM C 1202 after two curing times of 28 and 90 days. The effect on the resistance of concrete against damage caused by corrosion of the embedded steel has been investigated using an accelerated corrosion test by impressing a constant anodic potential. The variation of current with time and time to failure of RC specimens were determined at 28 and 90 days curing. In addition, effects of aggressive acidic environments on mortars were investigated through 100 days of exposure to 5 % $H_2SO_4$, 10 % HCl, 5 % $HNO_3$ and 10 % $CH_3COOH$ solutions. Evaluation of sulfate resistance of mortars was also performed by immersing in 5 % $Na_2SO_4$ solution for 52 weeks. Test results reveal that the resistance to chloride penetration of concrete improves substantially with the increase of replacement level, and the concretes containing scoria based-blended cements, especially CEM II/B-P, exhibited corrosion initiation periods several times longer than the control mix. Further, an increase in scoria addition improves the acid resistance of mortar, especially in the early days of exposure, whereas after a long period of continuous exposure all specimens show the same behavior against the acid attack. According to results of sulfate resistance, CEM II/B-P can be used instead of SRPC in sulfate-bearing environments.