• Title/Summary/Keyword: Blasting effects

Search Result 134, Processing Time 0.028 seconds

Effects of Blasting and Acidic Treatment on the Corrosion Characteristics of Dental Implant Fabricated with Cp-Ti and Ti-6Al-4V Alloy (Cp-Ti와 Ti-6Al-4V 합금으로 제조된 치과용 임플란트의 부식특성에 관한 블라스팅과 산세처리의 영향)

  • Moon, Young-Pil;Choe, Han-Cheol;Park, Su-Jung;Kim, Won-Gi;Ko, Yeong-Mu
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.4
    • /
    • pp.190-197
    • /
    • 2006
  • The effects of blasting and acidic treatment on the corrosion characteristics of dental implant fabricated with Cp-Ti and Ti-6Al-4V alloy have been researched by using electrochemical methods. The fabricated implants were cleaned and sandblasted by $Al_2O_3$ powder and then acidic treatment was carried out in nitric acid solution. The surface morphology were observed using scanning electron microscope. The corrosion behaviors were investigated using potentiosat and EIS in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The potentio-dynamic test in 0.9% NaCl indicated that the corrosion potential of blasting and acidic treated implant was lower than that of non treated implant, but current density was higher than that of non treated implant. From the cyclic potentiodynamic test results of Ti implant, the passivation current density of blasting and acidic treated implant slightly higher than that of non treated implant. From A.C. impedance test results in 0.9% NaCl solution, polarization resistance($R_p$) value of blasting and acidic treated implant was lower than that of non treated implant. In case of blasting and acidic treated implant surface, the pits were observed in valley and crest of implant surface.

Determination of equivalent blasting load considering millisecond delay effect

  • Song, Zhan-Ping;Li, Shi-Hao;Wang, Jun-Bao;Sun, Zhi-Yuan;Liu, Jing;Chang, Yu-Zhen
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.745-754
    • /
    • 2018
  • In the analysis of the effects of rock tunnel blasting vibration on adjacent existing buildings, the model of simplified equivalent load produces higher calculation result of vibration, due to the lack of consideration of the millisecond delay effect. This paper, based on the static force equivalence principle of blasting load, proposes a new determination method of equivalent load of blasting vibration. The proposed method, based on the elastic-static force equivalence principle of stress wave, equals the blasting loads of several single blastholes in the same section of millisecond blasting to the triangle blasting load curve of the exploded equivalent elastic boundary surface. According to the attenuation law of stress wave, the attenuated equivalent triangle blasting load curve of the equivalent elastic boundary is applied on the tunnel excavation contour surface, obtaining the final applied equivalent load. Taking the millisecond delay time of different sections into account, the time-history curve of equivalent load of the whole section applied on the tunnel excavation contour surface can be obtained. Based on Sailing Tunnel with small spacing on Sanmenxia-Xichuan Expressway, an analysis on the blasting vibration response of the later and early stages of the tunnel construction is carried out through numerical simulation using the proposed equivalent load model considering millisecond delay effect and the simplified equivalent triangle load curve model respectively. The analysis of the numerical results comparing with the field monitoring ones shows that the calculation results obtained from the proposed equivalent load model are closer to the measured ones and more feasible.

Environmental Approach to Blasting Effect on the Surrounding Area when the Mine Blasting (광산 발파 시 인근지역에 미치는 발파영향에 대한 환경적 접근)

  • Jeong, Beonghun;Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.12
    • /
    • pp.5-12
    • /
    • 2015
  • Since blasting noise is impact noise, it will give a sudden shock to the human. In the case, such as the blast vibration, it has given aging buildings and livestock great damage to move the vibration along ground in nearby regions. In this study, the influence of the blasting generated during excavation was analyzed for effects on regional. A couple of field and laboratory surveys about geological were carried out to figure out the geological ratio in the study-performed area. Blast vibration noise was compared to the domestic and abroad case studies and each of the institutions permissible standards established the most appropriate criteria in site condition. The vibration velocity of blasting vibration exploits the values which were measured from test blasting on the ground in order to examine blasting effect. Considering the blasting point as the shortest distance from safety facilities (farms, private houses, etc.), the examination of the influence range, which was derived from the vibration velocity of blasting vibration, was performed to figure out how the point affected the safety facilities. Three-dimensional numerical analysis was performed a time history analysis in order to analyze the behavior of the structure for a dynamic blast load, which was determined in three directions of the blast vibration value. The results of three-dimensional numerical analysis and the blasting effect of blasting vibration estimation equation blasting vibration of impact circle with accompanying test blasting were compared. And the analysis confirmed similar results figures.

Effects of Civil Blasting on Noise, Vibration and Total Suspended Particles (토목 발파가 소음, 진동, 부유 분진에 미치는 영향)

  • Jeong, Jin Do;Jeong, Yeong Guk
    • Journal of Environmental Science International
    • /
    • v.13 no.1
    • /
    • pp.99-107
    • /
    • 2004
  • This research is to determine the level of environmental pollution at a blasting construction area which is the origin of noise, vibration, and suspended particle, and to compare the results with other domestic and international standard data. This experiment is also to find out the effects resulting from blasting construction and to propose a plan that can decrease environmental pollution. The blasting construction area is a factory site which is about one and half million square meter and sewage disposal plant is about ninety thousand square meter. Both were selected as the areas for the tests to be conducted in determination test. The test to determine the level of noise, vibration, and total suspended particle was conducted thirty times around the blasting construction area by comparing measurement results and numerical analysis. However, as the test was not conducted in the laboratory but in the actual blasting construction area, it was not possible to do the test with the same exact conditions each true. Therefore, the test was not ideal as conditions could change from test to test. For the most part, the level of noise was below the standard level of 70dB. Every vibration test was under the standard limitation. For example, a house, 200m away was tested for noise and vibration and the level was found to be under the 0.2 cm/sec which is the standard for specialty designed cultural sites., i.e very low level. Also a buried oil pipeline that was 30m away also marked under 2.0cm/sec which is the norm for an industrial area. However, if there were an oil pipeline under the house, the amount of charging gunpowder per hole should be decreased compared to the amount used in the test. The test result for suspended particles under the standard limitation which is 24hour average 300$\mu\textrm{g}$/㎥ at a distance from blasting wavelength, but at detonator, total suspended particle from the blast origin exceeded the standard limitation. If explosion occurs when it detonates in the hole, most of the energy would be absorbed in the crushing of rocks, but some remaining energy would make noises and vibration inevitable. So the important thing is how to minimize the environmental pollution from the blasting. There should be regulations in order that the standard limitation is not exceeded, and to decrease the environmental pollution from the blasting.

Numerical Study on the Effects of Air Decking in Half Charge Blasting Using AUTODYN (AUTODYN을 이용한 하프장전 발파공법의 에어데크 효과에 대한 수치해석적 연구)

  • Baluch, Khaqan;Kim, Jung-Kyu;Kim, Seung-Jun;Jin, Guochen;Jung, Seung-Won;Yang, Hyung-Sik;Kim, Nam-Soo;Kim, Jong-Gwan
    • Explosives and Blasting
    • /
    • v.36 no.4
    • /
    • pp.1-8
    • /
    • 2018
  • This numerical study was intended to evaluate the applicability of the half charge blasting to mining and tunnelling. The half charge blasting is a method that two separate rounds are sequentially blasted for the rock burdens in which long blast holes have already been drilled at one operation. The aim of the method is to decrease the construction cost and period in mining and tunnelling projects as well as to increase the blasting efficiency. Several numerical analyses were conducted by using the Euler-Lagrange solver on ANSYS AUTODYN to identify the effects of the suggested method on the blasting results in underground excavations. The overall performance of the suggested method was also compared to an ordinary blasting method. The analysis model was comprised of the Eulerian parts (explosive, air, and stemming materials) and the Lagrangian parts (rock material). As a result, it was found that, owing to the air decks formed in the bottom parts of the long blast holes, the first round of the suggested method presented a higher shock pressure and particle velocities in the vicinity of the blast holes compared to the ordinary blasting method.

A Study on the Effect of the Stemming Hole medium to the Blasting Separation Distance of Structure (공내 매질이 구조물의 발파이격거리에 미치는 영향에 관한 연구)

  • Kang, Hee-Seop;Jeong, Jung-Gyu;Bang, Myung-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.100-108
    • /
    • 2017
  • Because of urbanization, Industrialization and expansion of transportation network, blasting works are recently increasing in construction field. The blasting work influences environmental effects to residents and the safety of facilities around the working place, so the development of blasting technology is needed to reduce the damage to residents. The blasting mechanism in the hole was studied and tested in the blasting sites by the difference of diameter between explosives and drilling hole, which is named by the decoupling effect. This effect was tested by changing the medium between explosives and hole wall in three working sites(railway, highway and industrial complex). The vibration velocity of blasting was recorded and vibration equations were produced by regression analyses. Finally, the structure separation distance was derived using these equations. The testing results show that the specific gravity of medium is larger, the separation distance is smaller and the duration time of blasting is shorter in case of large specific gravity of medium, so the vibration effect stops more fastly in the water compared with the air.

Propagation Characteristics of Ground Vibration Caused by Blast Hole Explosion of High Explosives in Granite (고위력 폭약의 화강암 내 장약공 폭발에 의한 지반진동 전파특성에 관한 연구)

  • Gyeong-Gyu Kim;Chan-Hwi Shin;Han-Lim Kim;Ju-Suk Yang;Sang-Ho Bae;Kyung-Jae Yun;Sang-Ho Cho
    • Explosives and Blasting
    • /
    • v.41 no.4
    • /
    • pp.29-40
    • /
    • 2023
  • Rock blasting is utilized in various fields such as mining, tunneling, and the construction of underground structures. The role of rock blasting technology has became increasingly significant with the growing utilization of underground cavity. Blast hole pressure, generated during rock blasting, is a critical variable directly impacting factors such as crushing and blast vibration. It stands out as one of the most important parameters for assessing explosive performance and predicting blasting effects. While blast hole pressure has been studied by several researches, comparisons are challenging due to variations in experimental conditions such as explosive type, charge, and blasting conditions. In this study, blast hole pressure sensors and observation hole pressure sensors were developed to measure pressure during single-hole blasting, The experimental results were then used to discuss the propagation characteristics of pressure around the blast hole and the corresponding blast vibration.

A Study on Controlled Blasting Design in Construction Field (건설현장에서의 제조 발파 설계에 관한 고찰)

  • 이화창
    • Explosives and Blasting
    • /
    • v.14 no.1
    • /
    • pp.49-63
    • /
    • 1996
  • Blasting is a work that destruct an object by use of explosive. Its use covers a wid range, and it is applicable to blast the rocks, minerals, coal, steel and concrete structures, bridges, etc. To execute the blast plan most effectively, the properties of the object and the explosives should be well understood, and all the other conditions must ve incorporated in its design and plan. A safe blasting pattern and procedure should be selected considering the envirinmental effects and dther conditions. At the same time, a protective protective pricedures should be utilized to prevent the safety hazards such as the excessive blast vubration, air pressure, and the flying fragments. This study reviews the controlled blasting techniques in these regards.

  • PDF

The Blasting Pollution Effects Estimation & The Excavation Construction Case Study Of Personal Museum On Tunnel (산악터널에 인접한 개인 박물관의 발파공해 영향평가 및 굴착 시공사례)

  • Kwon, Soon-Sub;Lee, Myong-Choul;Park, Tae-Soon;Jeong, In-Choul;Lee, Hyun-Gu
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.127-132
    • /
    • 2004
  • The third double-track construction part of work, called Chung Ang Railroad line(Deok-So$\∼$Won-Ju) is in progress and the personal museum located 330m from the starting point of Pal-Dang Tunnel(length=4,470m) line in the canyon is to be effected by rock blasting during the tunnel excavation work, especially museum articles and building itself. This paper is the example of application suitable tunnel rock blasting pattern for excavation after the case study about the investigation and analysis of rock blasting noise pollution during tunnel excavation work. The museum is a three-story building, RC concrete structure and is located 17m from the top of the tunnel, in the center of the double-track line. Comparing estimate vibration frequency with site vibration one, it can be verified the reasonable rock blasting noise pollution as improving the application of tunnel excavation rock blasting pattern. The above pattern has been selected economically and effectively and applied to our construction field.

  • PDF

Applicability of Safe Blast Vibration Limits to the Blasting Work near Safety Related Structures (안전관련 구조물 근접시공시 발파진동 허용기준의 적용성에 관하여)

  • 류창하;서우춘;정소걸;이종림;주광호;이대수
    • Tunnel and Underground Space
    • /
    • v.4 no.3
    • /
    • pp.287-296
    • /
    • 1994
  • Safety-related structures of power plants have to be protected against the effects of possible hazards and natural phenomena. Earthquakes are considered a major dynamic design loading as a requirement of plant design, but the effects of blast-induced vibratons are not. Due to the difficulties of obtaining construction site for new plants, following ones are inevitably being built in the site adjacent to existing power plants. Therefore considerable thought has been recently given to the dynamic loading generated by blasting works near the plants. In this paper, discussed is applicability of existing vibration standards and industrial codes to the blasting works near safety related structures. Also evaluated are the parameters for the safe vibration limits such as measure of vibration level, frequency consideration, structure response, propagation equation, etc.

  • PDF