• Title/Summary/Keyword: Blasting accidents

Search Result 24, Processing Time 0.019 seconds

Study on Improvement of Safety Standards for Blasting Operation (발파 관련 산업안전보건규칙 개선을 위한 연구)

  • Hoyoung, Jeong;Yeon-Ho Jin;Sik Kim;Yong Cheol Bae;Sangho Cho;Sungyun Kang;Kwangyeom Kim
    • Explosives and Blasting
    • /
    • v.42 no.2
    • /
    • pp.1-11
    • /
    • 2024
  • The purpose of this study is to suggest amendments for the effective operation of safety and health regulations that stipulate safety standards for the prevention of industrial accidents in blasting and tunneling works. Because the regulations on Occupational Safety and Health Standards have not been revised for a long time, the regulations do not meet the requirements in site, and it is reported that it is difficult to implement the regulations at workplaces due to various deficiencies. Therefore, this study aims to abolish or improve unreasonable regulations that do not fit reality due to changes in the technology environment, or to modify low-operability regulations considering domestic conditions in blasting and tunneling workplaces. By comparing domestic laws and standards related to blasting and tunneling works with foreign ones, the improvement measures were suggested.

A Case of Application in Hard Rock Tunnel and Development of High Performance Emulsion Explosives (MegaMEX) (고성능 Emulsion 폭약(MegaMEX)의 개발 및 경암 터널에서의 적용 사례)

  • Min Hyung-Dong;Lee Yun-Jae;Park Yun-Seok;Choi Kyung-Yeol
    • Explosives and Blasting
    • /
    • v.23 no.1
    • /
    • pp.55-64
    • /
    • 2005
  • Safe and cheap emulsion explosives have recently replaced the existing CD explosives in order for people to reduce the prime cost and to prevent the safety accidents from happening in construction and civil engineering sites. However, the emulsion explosives have been in reality fared with difficulties in terms of the blasting force when using them in the tunnel constructed in the rock mass composed of hard rock. In this regards, this study is to verify their blasting efficiency and possibility of construction by applying MegaMEX, one of the high performance Emulsion explosives, to the rock mass of hard rock. In terms of their blasting efficiency such as advance ratio and fragmentation, it has turned out that they have overcome the limit of the existing Emulsion explosives and they have had the equivalent level of MegaMITE, one of the GD(Gelatin dynamite) types of explosives while they have been also advantageous to the environmental aspects.

Innovation of the Underhand Closed Bench (UCB) Mining Method Utilizing Large-Scale Blasting in Deep Underground Mining (심부 지하광산 개발에서의 대규모 발파를 활용한 Underhand Closed Bench (UCB) 채광 혁신기술)

  • Seogyeong Lee;Se-Wook Oh;Sang-Ho Cho;Junhyeok Park
    • Explosives and Blasting
    • /
    • v.42 no.2
    • /
    • pp.29-41
    • /
    • 2024
  • The increasing demand for metallic minerals due to global growth and the continued exploitation of near-surface minerals requires safe and efficient ways to mine ores present in deep mines. In deep mines, stresses concentrated around the cavity increase, which can lead to problems such as induced seismicity and rockbursts. In addition, the transfer of energy from blasting to deeply located faults can cause fault slip, which can lead to earthquakes, and controlling these events is key to deep mining methods. In this technical report, we will introduce the Underhand Closed Bench (UCB) mining method, which can control possible accidents and increase productivity when mining in deep mines.

An Evaluation of the Influence of a Mixed Gas Explosion on the Stability of an Underground Excavation (혼합 가스폭발이 지하구조물 안정성에 미치는 영향 평가)

  • Kim, Minju;Kwon, Sangki
    • Explosives and Blasting
    • /
    • v.38 no.4
    • /
    • pp.1-15
    • /
    • 2020
  • With the increase of the utilization of underground space in Korea, explosion accidents at the underground facilities such as gas pipes have occurred frequently. In urban area with high population density, individual explosion accidents are likely to spread into large complex accidents. It is necessary to investigate the effect of explosion on the stability of underground structures in urban area. In this study, a sensitivity analysis was carried out to investigate the possible influence of nearby explosion on the stability of underground structure with 8 parameters including explosion conditions and rock properties. From the sensitivity analysis using AUTODYN, the main and interaction effects of each parameters could be determined. From the analysis, it was found that the distance between explosion point and tunnel, charge weight, and Young's modulus are the most important parameters on the stress components around a tunnel.

Improvement of Blast Efficiency by Correlation Analysis of Impella Blast and Steel Balls for Surface Treatment of Steel Bridges (강교 보수도장의 표면처리를 위한 임펠라 블라스트와 스틸볼의 상관관계 분석을 통한 블라스트 효율 향상)

  • Chang, Byoung Ha;Jang, Dong Wook;Seo, Myoung Kook;Lee, Ho Yeon;Park, Jae Hyun
    • Journal of Drive and Control
    • /
    • v.19 no.1
    • /
    • pp.8-15
    • /
    • 2022
  • The demand for the re-painting of steel bridges is increasing, but surface treatment is still centered on human resources for on-site re-painting processes. Worker safety accidents continue to occur because the work is performed in a narrow space. Recently, PS balls with excellent surface treatment have been used for blasting, but the working environment is poor due to the large amount of dust generated. In this study, an effective surface treatment method using impeller blasting equipment was developed. The correlation between steel ball size, impeller rotation speed, and exposure time was studied to optimize the efficiency of the surface treatment.

Dynamic performance of girder bridges with explosion-proof and aseismic system

  • Wang, Jingyu;Yuan, Wancheng;Wu, Xun;Wei, Kai
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.419-426
    • /
    • 2017
  • Recently, the transportation of dangerous explosive goods is increasing, which makes vehicle blasting accidents a potential threat for the safety of bridge structures. In addition, blasting accidents happen more easily when earthquake occurs. Excessive dynamic response of bridges under extreme loads may cause local member damage, serviceability issues, or even failure of the whole structure. In this paper, a new explosion-proof and aseismic system is proposed including cable support damping bearing and steel-fiber reinforced concrete based on the existing researches. Then, considering one 40m-span simply supported concrete T-bridge as the prototype, through scale model test and numerical simulation, the dynamic response of the bridge under three conditions including only earthquake, only blast load and the combination of the two extreme loads is obtained and the applicability of this explosion-proof and aseismic system is explored. Results of the study show that this explosion-proof and aseismic system has good adaptability to seism and blast load at different level. The reducing vibration isolation efficiency of cable support damping bearing is pretty high. Increasing cables does not affect the good shock-absorption performance of the original bearing. The new system is good at shock absorption and displacement limitation. It works well in reducing the vertical dynamic response of beam body, and could limit the relative displacement between main girder and capping beam in different orientation so as to solve the problem of beam falling. The study also shows that the enhancement of steel fibers in concrete could significantly improve the blast resistance of main beam. Results of this paper can be used in the process of antiknock design, and provide strong theoretical basis for comprehensive protection and support of girder bridges.

A Review of TNT Equivalent Method for Evaluating Explosion Energy due to Gas Explosion (가스폭발에 따른 폭발에너지를 평가하기 위한 TNT 등가량 환산방법에 대한 고찰)

  • Kwon, Sangki;Park, Jung-Chan
    • Explosives and Blasting
    • /
    • v.33 no.3
    • /
    • pp.1-13
    • /
    • 2015
  • Accidents related to gas explosion are frequently happened in foreign countries and in Korea. For the evaluation and the analysis of gas explosions, TNT equivalent methods are used. In this study, the influence of the selection of chemical equation in TNT explosion and the selection of enthalpy of the products on the explosion energy, detonation pressure, velocity of detonation, and temperature was calculated. Depending on the chemical equations, the maximum detonation pressure can be 2 times higher than the minimum. As an example for applying TNT equivalent method, an explosion of methane gas in a confined volume was assumed. With the TNT equivalent, it was possible to predict the variation of peak overpressure and impulse with the distance from the explosion location.

Development of Protection Techniques for Explosive Demolition of RC Pillar (철근콘크리트 기둥 발파해체를 위한 방호기술 연구)

  • Chang Ha Ryu;Byung Hee Choi;Yang Kyun Kim
    • Explosives and Blasting
    • /
    • v.20 no.4
    • /
    • pp.17-28
    • /
    • 2002
  • Safety concern is one of the most important parameters in the design of building demolition by explosive blasting, Accidents were sometimes reported due to the flying chips of fragmented materials In building demolition work in urban area. Laboratory experiments were performed to investigate the failure behavior of reinforced concrete pillars under blast loading and to develop an effective protection technique. Sixteen reinforced concrete pillars were constructed. The failure behavior and the flying chip velocities were observed by means of a high-speed camera. Protection scheme was designed and the effects of several protection materials were investigated. Two kinds of non-woven fabrics and wire net were tested as protection materials. The results showed that reinforcing bar was one of the important factors to determine specific charges, and that mesh size of wire net and tied-up method affected the protection of flying chips. Control of gas effects is also a key to the control of flying chips. It was recommended to use both wire net and non-woven fabrics as primary and secondary protection materials. Such protection scheme was successfully applied to the explosive demolition of apartment buildings.

A Study on the Behavior of an Existing Tunnel and the Safety Implications on its Facilities from a New Tunnel Blasting (신설 터널 발파 시 기존 터널 거동 및 시설물 안전에 관한 연구)

  • Kim, Sung Hoon;Cho, Woncheol
    • Journal of Korean Society of societal Security
    • /
    • v.3 no.2
    • /
    • pp.57-64
    • /
    • 2010
  • In this study, the behavior and safety of an existing tunnel and its facilities are investigated when a new tunnel adjacent to the existing tunnel is blasted. The design of the new tunnel puts priority on stability of the tunnel itself over the safety of the facilities which are installed within the existing tunnel such as jet fans. And thus, a detailed consideration on securing the safety of the existing facilities has been insufficient. An analysis on the types of traffic accidents in the last ten years shows that most incidents were due to the driver's improper response in emergency situations and unexpected obstacles. In consideration of this analysis, the safety of the facilities in the existing tunnel was secured by minimizing the charging amount for each hangfire and changing the excavation method of evacuation communication shelters to the large center hole cut blasting method to reduce blasting vibration. For a more quantitative analysis, measurement devices were installed inside the existing tunnel, at houses adjacent to the new tunnel, near jet fans in the existing tunnel. This enabled real time measurement of displacements of the existing tunnel, adjacent houses, and jet fans without interrupting traffic flow. Therefore, the improvements of charging amount for each hangfire, the blasting method, and the measurement method are suggested in this paper to secure the safety of the facilities in the existing tunnel when a new tunnel, located on a large city and adjacent to an existing tunnel, is designed.

  • PDF

Structural Analysis of the Pre-weakening of a Cylindrical Concrete Silo for the Application of Overturning Explosive Demolition Method (원통형 콘크리트 사일로의 발파해체 전도공법 적용을 위한 사전취약화 구조해석)

  • Choi, Hoon;Kim, Hyo-Jin;Park, Hoon;Yoon, Soon-Jong
    • Explosives and Blasting
    • /
    • v.27 no.2
    • /
    • pp.12-18
    • /
    • 2009
  • Recently, several cases of destruction of old cylindrical silos by explosive demolition method have been reported. This study deals with the subject concerning the pre-weakening of a cylindrical concrete silo for the application of overturning explosive demolition method. In the past, the pre-weakening operation of structure in explosive demolition has been done by use of some empirical methods. These empirical approaches, however, have possibilities of unexpected accidents. In order to provide a guideline for the pre-weakening of cylindrical silos and similar structures, this paper shows the result of a case study, in which the instability of a silo due to pre-weakening is investigated by a numerical structural analysis before actually conducting pre-weakening and demolition operations.