Browse > Article
http://dx.doi.org/10.22704/ksee.2020.38.4.001

An Evaluation of the Influence of a Mixed Gas Explosion on the Stability of an Underground Excavation  

Kim, Minju (인하대학교 에너지자원공학과)
Kwon, Sangki (인하대학교 에너지자원공학과)
Publication Information
Explosives and Blasting / v.38, no.4, 2020 , pp. 1-15 More about this Journal
Abstract
With the increase of the utilization of underground space in Korea, explosion accidents at the underground facilities such as gas pipes have occurred frequently. In urban area with high population density, individual explosion accidents are likely to spread into large complex accidents. It is necessary to investigate the effect of explosion on the stability of underground structures in urban area. In this study, a sensitivity analysis was carried out to investigate the possible influence of nearby explosion on the stability of underground structure with 8 parameters including explosion conditions and rock properties. From the sensitivity analysis using AUTODYN, the main and interaction effects of each parameters could be determined. From the analysis, it was found that the distance between explosion point and tunnel, charge weight, and Young's modulus are the most important parameters on the stress components around a tunnel.
Keywords
Gas explosion; Mixed gas; TNT equivlent; AUTODYN; Sensitivity analysis;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 권상기, 박정찬, 2015, 가스폭발에 따른 폭발에너지를 평가하기 위한 TNT 등가량 환산방법에 대한 고찰, 화약.발파, Vol. 33, No. 3, pp. 1-13.
2 Ma, G.W., Hao, H., and Zhou, Y.X., 1998, Modeling of Wave Propagation Induced by Underground Explosion, Computers and Geotechnics, Vol. 22 No. 3-4, pp. 283-303.   DOI
3 Mitelman, A and Elmo, D., 2014, Modelling of Blast-Induced Damage in Tunnels Using a Hybrid Finite-Discrete Numerical Approach, Journal of Rock Mechanics and Geotechnical Engineering, Vol. 6, No. 6, pp. 565-573.   DOI
4 Pierorazio, A. J., Thomas, J. K., Baker, Q. A., Ketchum, D. E., 2005, An Update to the Baker-Strehlow-Tang Vapor Cloud Explosion Prediction Methodology Flame Speed Table, Process Safety Progress, Vol. 24, No. 1, pp. 59-65.   DOI
5 Riedel, W., Thoma, K., Hiermaier, S., and Schmolinske, E., 1999, Penetration of Reinforced Concrete by BETA-B-500 Numerical Analysis Using a New Macroscopic Concrete Model for Hydrocodes, In Proceedings of the 9th International Symposium on the Effects of Munitions with Structures, Vol. 315, Berlin-Strausberg Germany.
6 Sochet, I., 2010, Blast Effects of External Explosions.
7 Taha, M., Soewarto, I., Acar, Y., Gale, R., and Zappi, M., 1997, Surfactant Enhanced Desorption of TNT from Soil, Water, Air, and Soil Pollution, Vol. 100, No. 1, pp. 33-48.   DOI
8 Van den Berg, A. C., 1985, The Multi-Energy Method: A Framework for Vapour Cloud Explosion Blast Prediction, Journal of Hazardous Materials, Vol. 12, No. 1, pp. 1-10.   DOI
9 김영민, 2011, 가스폭발하중에 의한 터널 구조물의 동적거동해석, 한국터널지하공간학회논문집 Vol. 15, No. 5, pp. 413-430.
10 김민주, 권상기, 2020, CO 와CH4, C2H4의 혼합 가스 폭발에 대한 TNT 등가량 계산, 화약.발파, Vol. 38, No. 1, pp. 1-13.
11 김의수, 김종혁, 심종헌, 김진표, 고재모, 박남규, 2015, AUTODYN을 이용한 LNG 폭발 사고 위력 평가에 관한 법공학적 연구, 한국안전학회지(구 산업안전학회지) Vol. 30, No. 4, pp. 56-63.   DOI
12 김한수, 안효승, 2014, 철근콘크리트 건물의 폭발하중에 의한 연쇄붕괴 해석을 위한 침식 기준, 한국콘크리트학회 논문집, Vol. 26, No. 3, pp. 335-342.
13 산업통상자원부, 제1차 가스안전관리 기본계획(안)(2015-2019), 2020.08.26.
14 권상기, 2017, 폭발파에 의한 폭발압력곡선 경험식에 관한 연구, 화약.발파, Vol. 35, No. 1, pp. 1-17.
15 권상기, 김하영, 2016, 중국 텐진항 폭발사고 원인과 관련된 폭발 에너지 분석, 화약.발파, Vol. 34, No. 1, pp. 1-10.
16 심재원, 김낙영, 이현승, 2020, 2차로 마제형 터널 내 폭발 시 동적 거동 시뮬레이션, 한국지반환경공학회논문집, Vol. 21, No. 5, pp. 23-33.
17 Ai, H. A., and Ahrens, T. J., 2006, Numerical Modeling of Shock‐Induced Damage for Granite under Dynamic Loading, In AIP Conference Proceedings, Vol. 845, No. 1, pp. 1431-1434.
18 장유리, 정승호, 2016, 지하 매설 공동구 내부 가스 폭발에 대한 위험성 평가, 한국가스학회지, Vol. 50, No. 5, pp. 89-95.
19 전두진, 한상을, 2016, 폭발해석을 위한 간략 폭발하중 제안식, 한국전산구조공학회 논문집, Vol. 29, No. 1, pp. 67-75.
20 한우섭, 한인수, 최이락, 박상용, 2015, 화학물질의 폭발사고 피해예측 및 적용방안 연구, 안전보건공단 연구보고서, pp. 31-37.
21 Autodyn, 2003, Theory Manual. Horsham, UK: Century Dynamics Ltd.
22 Baker, W.E., Cox, P.A., Westine, P.S., Kulesz, J.J., and Strehlow, R.A., 1983, Explosion Hazards and Evaluation, Elsevier.
23 Balaraju, B., Mudaliar, K. R., Viswanathan, A., and Harrison, B. K., 2002, The ASTM Computer Program for Chemical Thermodynamic and Energy Release Evaluation CHETAH 7.3 User Guide, West Conshohocken, Pennsylvania: ASTM InTernational.
24 Bjerketvedt, D., Bakke, J. R., and Van Wingerden, K., 1997, Gas Explosion Handbook., Journal of Hazardous Materials, Vol. 52, No. 1, pp. 1-150.   DOI
25 Chowdhury, A. H., and T. E. Wilt., 2015, Characterizing Explosive Effects on Underground Structures. US Nuclear Regulatory Commission, Office of Nuclear Security and Incident Response.
26 Cohen, J., 1988, Statistical Power Analysis for the Behavioral Sciences. Academic Press.
27 Crowl, W.K., 1969, Structures to Resist the Effects of Accidental Explosions, Technical Manual TM 5-1300, US Army, Navy and Air Force, US Government.
28 Kuili S and Sastry, V.R., 2018, A Numerical Modelling Approach to Assess the Behaviour of Underground Cavern Subjected to Blast Loads, International Journal of Mining Science and Technology, Vol. 28, No. 6, pp. 975-983.   DOI
29 Deng, X.F., Chen, S.G., Zhu, J.B., Zhou, Y.X., Zhao, Z.Y., and Zhao, J., 2014, UDEC-AUTODYN Hybrid Modeling of a Large-Scale Underground Explosion Test, Rock Mechanics and Rock Engineering, Vol. 48, No. 2, pp. 737-747.   DOI
30 KOSIS(국토교통부. 전국터널현황), 2020.10.13.
31 Lea, C. J., and Ledin, H.S., 2002, A Review of the State-of-the-Art in Gas Explosion Modeling, Health ans Safety Lab. report, HSL/2002/02.
32 Lee, E. L., Hornig, H. C., and Kury, J. W., 1968, Adiabatic Expansion of High Explosive Detonation Products (No. UCRL-50422), Univ. of California Radiation Lab. at Livermore, Livermore, CA (United States).
33 Liu, H., 2009, Dynamic Analysis of Subway Structures Under Blast Loading. Geotechnical and Geological Engineering, Vol. 27, No. 6 pp. 699-711.   DOI