• Title/Summary/Keyword: Blast source

Search Result 100, Processing Time 0.051 seconds

Effects of Disease Resistant Genetically Modified Rice on Soil Microbial Community Structure According to Growth Stage

  • Sohn, Soo-In;Oh, Young-Ju;Ahn, Jae-Hyung;Kang, Hyeon-jung;Cho, Woo-Suk;Cho, Yoonsung;Lee, Bum Kyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.3
    • /
    • pp.185-196
    • /
    • 2019
  • BACKGROUND: This study investigated the effects of rice genetically modified to be resistant against rice blast and rice bacterial blight on the soil microbial community. A comparative analysis of the effects of rice genetically modified rice choline kinase (OsCK1) gene for disease resistance (GM rice) and the Nakdong parental cultivar (non-GM rice) on the soil microbial community at each stage was conducted using rhizosphere soil of the OsCK1 and Nakdong rice. METHODS AND RESULTS: The soil chemistry at each growth stage and the bacterial and fungal population densities were analyzed. Soil DNA was extracted from the samples, and the microbial community structures of the two soils were analyzed by pyrosequencing. No significant differences were observed in the soil chemistry and microbial population density between the two soils. The taxonomic analysis showed that Chloroflexi, Proteobacteria, Firmicutes, Actinobacteria, and Acidobacteria were present in all soils as the major phyla. Although the source tracking analysis per phylogenetic rank revealed that there were differences in the bacteria between the GM and non-GM soil as well as among the cultivation stages, the GM and non-GM soil were grouped according to the growth stages in the UPGMA dendrogram analysis. CONCLUSION: The difference in bacterial distributions between Nakdong and OsCK1 rice soils at each phylogenetic level detected in microbial community analysis by pyrosequencing may be due to the genetic modification done on GM rice or due to heterogeneity of the soil environment. In order to clarify this, it is necessary to analyze changes in root exudates along with the expression of transgene. A more detailed study involving additional multilateral soil analyses is required.

Reactivity of aluminosilicate materials and synthesis of geopolymer mortar under ambient and hot curing condition

  • Zafar, Idrees;Tahir, Muhammad Akram;Hameed, Rizwan;Rashid, Khuram;Ju, Minkwan
    • Advances in concrete construction
    • /
    • v.13 no.1
    • /
    • pp.71-81
    • /
    • 2022
  • Aluminosilicate materials as precursors are heterogenous in nature, consisting of inert and partially reactive portion, and have varying proportions depending upon source materials. It is essential to assess the reactivity of precursor prior to synthesize geopolymers. Moreover, reactivity may act as decisive factor for setting molar concentration of NaOH, curing temperature and setting proportion of different precursors. In this experimental work, the reactivities of two precursors, low calcium (fly ash (FA)) and high calcium (ground granulated blast furnace slag (GGBS)), were assessed through the dissolution of aluminosilicate at (i) three molar concentrations (8, 12, and 16 M) of NaOH solution, (ii) 6 to 24 h dissolution time, and (iii) 20-100℃. Based on paratermeters influencing the reactivity, different proportions of ternary binders (two precursors and ordinary cement) were activated by the combined NaOH and Na2SiO3 solutions with two alkaline activators to precursor ratios, to synthesize the geopolymer. Reactivity results revealed that GGBS was 20-30% more reactive than FA at 20℃, at all three molar concentrations, but its reactivity decreased by 32-46% with increasing temperature due to the high calcium content. Setting time of geopolymer paste was reduced by adding GGBS due to its fast reactivity. Both GGBS and cement promoted the formation of all types of gels (i.e., C-S-H, C-A-S-H, and N-A-S-H). As a result, it was found that a specified mixing proportion could be used to improve the compressive strength over 30 MPa at both the ambient and hot curing conditions.

A New High Qualilty Rice Variety with Lodging Resistance and Multiple Resistance to Diseases, "Donghaejinmi" (중만생 고품질 내도복 복합내병성 벼 신품종 "동해진미(東海珍味)")

  • Yeo, Un-Sang;Kim, Jeong-Il;Lee, Jeom-Sig;Park, No-Bong;Chang, Jae-Ki;Oh, Byeong-Geun;Kang, Jung-Hun;Kwak, Do-Yeon;Cho, Jun-Hyun;Lee, Jong-Hee;Kwon, Oh-Deog;Lee, Ji-Yoon;Nam, Min-Hee;Kim, Sang-Yeol;Ku, Yeon-Chung;Kim, Jae-Kyu
    • Korean Journal of Breeding Science
    • /
    • v.41 no.3
    • /
    • pp.288-291
    • /
    • 2009
  • A new commercial rice variety "Donghaejinmi" is a japonica rice (Oryza sativa L.) with lodging resistance and high grain quality. It has been developed by the rice breeding team of Yeongdeog Substation, National Institute of Crop Science (NICS), RDA. This variety was derived from a cross between "Milyang 64" as a resistance source of brown planthopper (Bph) and "Milyang 165" as grain quality source. The donor parent, "Milyang64" has been backcrossed three times with recurrent parent, "Milyang165" and selected by the pedigree breeding method. The pedigree of "Donghaejinmi", designated as "Yeongdeog 41" in 2003, was YR21259-B-B-68-1. It has a short culm length with 69 cm and medium-late growth time. This variety is resistant to stripe virus and moderately resistant to leaf blast disease with durable resistance. It also has tolerance to unfavorable environment such as cold, dried wind and storm. Milled rice kernel of "Donghaejinmi" is translucent, clear in chalkness and good at eating quality in panel test. The merit of this variety is high head rice ratio, which is essential element to produce an article of superior quality rice brand. The yield potential of "Donhaejinmi" in milled rice is about 6.05 MT/ha at ordinary fertilizer level of local adaptability test. This cultivar would be adaptable to Yeongnam inland plains and eastern costal area of Yeongnam province.

Manufacture of non-sintered cement solidifier using clay, waste soil and blast furnace slag as solidifying agents: Mineralogical investigation (점토, 폐토양 및 고로슬래그를 고화재로 이용한 비소성 시멘트 고화체 제조: 광물학적 고찰)

  • Jeon, Ji-Hun;Lee, Jong-Hwan;Lee, Woo-Chun;Lee, Sang-Woo;Kim, Soon-Oh
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.1
    • /
    • pp.25-39
    • /
    • 2022
  • This study was conducted to evaluate the manufacturing process of non-sintered cement for the safe containment of radioactive waste using low level or ultra-low level radioactive waste soil generated from nuclear-decommissioning facilities, clay minerals, and blast furnace slag (BFS) as an industrial by-product recycling and to characterize the products using mineralogical and morphological analyses. A stepwise approach was used: (1) measuring properties of source materials (reactants), such as waste soil, clay minerals, and BFS, (2) manufacturing the non-sintered cement for the containment of radioactive waste using source materials and deducing the optimal mixing ratio of solidifying and adjusting agents, and (3) conducting mineralogical and morphological analyses of products from the hydration reactions of manufactured non-sintered cement solidifier (NSCS) containing waste concrete generated from nuclear-decommissioning facilities. The analytical results of NSCS using waste soil and clay minerals confirmed none of the hydration products, but calcium silicate (CSH) and ettringite were examined as hydration products in the case of using BFS. The compressive strength of NSCS manufactured with the optimum mixing ratio and using waste soil and clay minerals was 3 MPa after the 28-day curing period, and it was not satisfied with the acceptance criteria (3.44 MPa) for being brought in disposal sites. However, the compressive strength of NSCS using BFS was estimated to be satisfied with the acceptance criteria, despite manufacturing conditions, and it was maximized to 27 MPa at the optimal mixing ratio. The results indicate that the most relevant NSCS for the safe containment of radioactive waste can be manufactured using BFS as solidifying agent and using waste soil and clay minerals as adsorbents for radioactive nuclides.

Diversity and Antimicrobial Activity of Actinomycetes Isolated from Rhizosphere of Rice (Oryza sativa L.) (벼 근권에서 분리한 방선균의 다양성과 항균 활성)

  • Lee, Hye-Won;Ahn, Jae-Hyung;Weon, Hang-Yeon;Song, Jaekyeong;Kim, Byung-Yong
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.371-378
    • /
    • 2013
  • Various microorganisms live in soil, of which those colonizing rhizosphere interact with nearby plants and tend to develop unique microbial communities. In this study, we isolated diverse actinomycetes from rhizosphere of rice (Oryza sativa L.) cultivated in fertilized (APK) and non-fertilized (NF) paddy soils, and investigated the diversity and antimicrobial activity of them. Using four kinds of selective media, 152 isolates were obtained from the soil samples and identified by determining 16S rRNA gene sequence. All of the isolates showed 99.0%~100.0% similarities with type strains and were classified into six genera: Dactylosporangium, Micromonospora, Kitasatospora, Promicromonospora, Streptomyces and Streptosporangium. Most of the isolates, 143 isolates, were classified into the genus Streptomyces. Additionally, many isolates had antimicrobial activity against plant pathogens, especially Magnaporthe oryzae (rice blast pathogen) in fungi. These findings demonstrated that rice rhizosphere can be a rich source of antagonistic actinomycetes producing diverse bioactive compounds.

Evaluation and Analysis of The Building Energy Saving Performance by Component of Wood Products Using EnergyPlus (EnergyPlus를 이용한 건물 부위별 목질제품 적용에 따른 건축물 에너지 절감 기여도 평가)

  • Seo, Jungki;Wi, Seunghwan;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.655-663
    • /
    • 2016
  • Increasing green house gas and it consequent climate change problems are discussed as a global issue. Accordingly, future local green house gas emission will increase up to 40% of the entire local green house gas emission and therefore, efforts to reduce the emission in construction industry is urgently required. Therefore, in this study, heating energy demand was analyzed by using the EnergyPlus simulation according to wood material finishes configuration. EnergyPlus has the entry for a variety of buildings and heating, ventilation, air conditioning (HAVC) system components, in particular buildings, air conditioning systems, and performs simultaneous integrated calculated through the feedback between the heat source unit, a verification program according to the ASHRAE Standard 140-2007 to be. The climate data for the simulation we used the data IWEC in Incheon and Gwangju provided by EnergyPlus. The analysis of simulation model was farm and fishing house standard design drawings: 2012, presented at the Korea Rural Community Corporation. The results of simulation of central region and southern region were effected by wood products of simulation model into the interior finish, exterior finish, windows, wooden structure. Also, it was confirmed that the reduced heating energy demand.

Different Potential of Hematopoietic Differentiation in Two Distinct Mouse Embryonic Stem Cells (두 개의 다른 마우스 배아줄기세포의 차별적인 조혈세포 분화능)

  • Kim, Jin-Sook;Kang, Ho-Bum;Song, Jee-Yeon;Oh, Goo-Taeg;Nam, Ki-Hoan;Lee, Young-Hee
    • Development and Reproduction
    • /
    • v.9 no.2
    • /
    • pp.105-114
    • /
    • 2005
  • Embryonic stem(ES) cells have tremendous potential as a cell source for cell-based therapies. Realization of that potential will depend on our ability to understand and manipulate the factors that influence cell fate decision and to develop methods for getting enough cell numbers for clinical applications. Hematopoiesis has been widely studied, and hematopoietic differentiation from ES cells is a good model to study lineage commitment. In this study, we investigated stemness and compared the efficiency of hematopoietic differentiation using two different mouse embryonic stem cell lines TC-1 and B6-1. Although the two cell lines showed known stem cell properties with minor differences, the embryoid body formation efficiency in methylcellulose was much higher in TC-1 than B6-1. When measured potentials of hematopoietic differentiation using functional(colony-forming cell) and phenotypic(specific marker expression) assays, we found that TC-1 can differentiate into hematopoietic cells in methylcellulose culture but B6-1 cannot. These results imply that we can improve the efficiency of hematopoietic cell differentiation by selection of proper cell lines and this may be also applied in the differentiation of human embryonic stem cells.

  • PDF

Screening of Chicken Genes Related to Germ Cell Development (닭에서 생식세포 발달에 관여하는 유전자 검색)

  • Lee, Jee-Young;Kim, Hee-Bal;Kim, Duk-Kyung;Song, Ki-Duk;Lim, Jeong-Mook;Han, Jae-Yong
    • Journal of Animal Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.183-194
    • /
    • 2007
  • We examined the expression patterns of the chicken TCs(tentative consensus sequences) originated from GermOnline genes in various chicken tissues, applying information from GermOnline to chicken organisms. 42 TCs among 84 chicken homologous TCs from the pool of 84 genes related to germ cell lineage in mouse(10), rat(71) and human(3) had high homology based on a BLAST search. Of these, Hmgcs2 and Sycp3 was shown to be expressed in a testis- specific manner and a reproductive organ(testis and ovary)-specific manner, respectively, by RT- PCR analysis. Crmp4, Cyct, Ldhc, Epha7, Pcsk4 and Dnmt3a are expressed in brain, testis, and ovary. The characterization of chicken genes originated from GermOnline in this research may give an enormously useful source of information related to germ cell development.

Mechanical Properties of Alkali-Activated Slag-Based Concrete Using Lightweight Aggregates (경량골재를 사용한 알칼리 활성 슬래그 콘크리트의 역학적 특성)

  • Yang, Keun-Hyeok;Oh, Seung-Jin;Song, Jin-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.405-412
    • /
    • 2008
  • Six alkali-activated (AA) concrete mixes were tested to explore the significance and limitations of developing an environmental friendly concrete. Ground granulated blast-furnace slag and powder typed sodium silicate were selected as source material and an alkaline activator, respectively. The main parameter investigated was the replacement level of lightweight fine aggregate to the natural sand. Workability and mechanical properties of lightweight AA concrete were measured: the variation of slump with time, the rate of compressive strength development, the splitting tensile strength, the moduli of rupture and elasticity, the stress-strain relationship, the bond resistance and shrinkage strain. Test results showed that the compressive strength of lightweight AA concrete sharply decreased when the replacement level of lightweight fine aggregate exceeded 30%. In particular, the increase in the discontinuous grading of lightweight aggregate resulted in the deterioration of the mechanical properties of concrete tested. The measured properties of lightweight AA concrete were also compared, wherever possible, with the results obtained from the design equations specified in ACI 318-05 or EC 2, depending on the relevance, and the results predicted from the empirical equations proposed by Slate et al. for lightweight ordinary Portland cement concrete. The stress-strain curves of different concrete were compared with predictions obtained from the mathematical model proposed by Tasnimi. The measured mechanical properties of lightweight AA concrete generally showed little agreement with the predictions obtained from these equations.

Phylogenetic analysis of the medicinal mushroom and taxonomical positions of their commercial products (약용버섯의 계통분류 및 국내유통 Inonotus속내 종간 구별을 위한 신속동정법 개발)

  • Jin, Cheng-Yun;Jeong, Min-Jung;Kim, Gi-Young;Park, Jae-Min;Kim, Mun-Ok;Moon, Dong-Oh;Lee, Tae-Ho;Lee, Jae-Dong
    • Journal of Mushroom
    • /
    • v.3 no.2
    • /
    • pp.52-59
    • /
    • 2005
  • The Aphyllophorales is a large order containing about 2,000 known species. Many of these are the bracket and coral fungi. The vast majority of these fungi are saprophytic on the plant debris. Many species are significant in decomposing plant remains, as they are able to digest cellulose or lignin that occurs in plant cell walls. Many of these fungi have been involved in everyday human affairs. A few were used medicinally by the Greeks and Romans as a remedy for many complaints, including colic, fractured limbs and bruises. Other bracket fungi have been used as curry combs for horses, as snuff, as razor strops and as a source of dye for clothing. The texture of the basidiocarp may be similar to that of cork, wood, leather, paper, or cartilage. Unlike the basidiocarps of the Order Agaricales, the basidiocarps of the Aphyllophorales are not fleshly and moist. Division of the members of the Aphyllophorales into genera was originally made on the basis of gross morphology of the basidiocarp and hymenium and Donk(1964) recognizes 22 families in this order. The species and genus whose typical in Aphylloporales were listed in Table. with related information. The ITS region sequence of some genus were found by BLAST search. Sequences retrieved from GenBank were visually aligned by the program CLUSTAL G. As a result, the medicinal mushroom was separated in four groups. In this multiple alignment, the sequence analysis among Fomes group, Inonotus group and Phellinus group showed high genetic similarity except Hericium group and Sparassis group.

  • PDF