• Title/Summary/Keyword: Blast induced vibration

Search Result 55, Processing Time 0.026 seconds

A Case Study on the Stability Assessment of Structures by Blast-induced Vibration (발파진동에 대한 구조물 안정성 평가 - 지하비축기지 건설 사례)

  • Lee, Chung-In;Choi, Yong-Kun;Jong, Yong-Hun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.479-484
    • /
    • 2005
  • The test blasts were carried out by detonating some single blastholes at two upper sites of the underground storage cavern the crude oil. One was performed at the entrance site of the construction tunnel and the other at the middle part of the underground storage cavern. Based on the blast-induced vibration measured by the test blasts, we suggested the propagation equations of blasting vibration that were capable of estimating the peak particle velocity. In addition, in order to assess the stability of the nearest ground storage tank, we did the frequency analysis and the response spectrum analysis with the particle velocity-time history and the particle acceleration-time history that were measured by the test blast carried out on the entrance site of the construction tunnel. In result, it was predicted that the displacement on the highest part of the tank shell was less than the allowable displacement.

  • PDF

Evaluation of the Influence of Blast Vibration on Machine Tool Accuracy (발파진동으로 인한 공작기계 가공정도의 영향 평가)

  • Lee, JinKab
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4790-4795
    • /
    • 2014
  • The machine tool is used widely to manufacture and trial manufactured goods in many machinery industries. Blast-induced ground vibration may have an environmental impact, such as damage to the adjacent structures and facilities. This study examined the influence of blast vibration on the accuracy of machine tools. The blast vibration and vibration of machine tools was measured to evaluate the influence of blast vibration on machine tools. Based on the evaluation of the vibration limit of machine tools, the vibration criteria for machine tools in this study were SLIGHTLY ROUGH~ROUGH. By repeated blast vibration, machine tools are more likely show reduced accuracy.

Stability Assessment of an Adjacent Ground Storage Tank by Blast-induced Vibration (발파진동에 대한 인접한 지상 저장탱크의 안정성 평가)

  • Jong, Yong-Hun;Lee, Chung-In;Choi, Yong-Kun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.1 s.106
    • /
    • pp.19-26
    • /
    • 2006
  • The test blasts were carried out by detonating some single blastholes at two upper sites of the underground storage cavern for the crude oil. One was performed at the entrance site of the construction tunnel and the other at the middle area of the underground storage cavern. Based on the blast-induced nitration measured by the test blasts, we suggested the propagation equations of blasting vibration that were capable of estimating the peak particle velocity. In addition, in order to assess the stability of the adjacent ground storage tank, we did the frequency analysis and the response spectrum analysis with the particle velocity-time history and the particle acceleration-time history that were measured by the test blast carried out on the entrance site of the construction tunnel. In result, it was predicted that the displacement on the highest part of the tank shell was less than the allowable displacement.

Control of Blast Vibration, Air Blast, and Fly Rock in Rock Excavation (암반굴착에 의한 발파진동, 소음 및 비석의 조절)

  • Ryu, Chang-Ha
    • Tunnel and Underground Space
    • /
    • v.2 no.1
    • /
    • pp.102-115
    • /
    • 1992
  • Blasting operations associated with rock excavation work may have an environmental impact in nearby structures or human beings. With the increase of construction work in urban areas, vibration problems and complaints have also increased. In order to determine the optimum design parameters for safe blast, it is essential to understand blast mechanism, design variables involved in blast-induced damage, and their effects on the blasting results. This paper deals with the characteristics of ground vibrations, air blast and fly rock caused by blast, including the general method of establishing the vibration predictors, and damage criteria suggested by various investigators. The results of field measurements from open pit mine and tunnel construction work are discussed. Basic concepts of how to design blast parameters to control the generation of ground vibrations, air blast and fly rock are presented.

  • PDF

Effect of blast-induced vibration on a tunnel (발파진동이 터널구조물에 미치는 영향)

  • Moon, Hoon-Ki;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.3
    • /
    • pp.207-219
    • /
    • 2008
  • In urban areas, it is very often to excavate ground adjacent to existing structures for the construction of new buildings. Deformation and vibration induced by such construction activities may cause damages to the existing structures and petitions from citizens. To secure safety of the existing structures, particularly of tunnels, establishment of general guidelines on vibration have been crucial concerns, although some institutions have their own guidelines which are not generally accepted. This study aims establishing guidelines for tunnel safety due to blast-induced vibration. Numerical methods are adopted for this study. Blast load equation proposed by International Society of Explosive Engineers (2000) is used to decide detonation pressure. Analysis models were obtained from the construction cases of Seoul Metros. By performing dynamic numerical analysis, vibration velocity of an existing tunnel is evaluated. The numerical results are verified by comparing with the field measurement data obtained in excavation sites adjacent to an existing tunnel. Based on the results vibration safety zone is proposed. Influence circle for vibration velocity is drawn and the area not exceeding the allowable vibration velocity is established.

  • PDF

Prediction of Blasting-induced Vibration at Sintanjin Area, Daejeonusing Borehole Test Blasting (시추공 시험발파를 이용한 대전 신탄진 지역의 발파진동 예측)

  • Lee, Chung-Won;Park, Sung-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.4
    • /
    • pp.55-62
    • /
    • 2018
  • Problems on vibration due to blasting for infrastructure development are getting important because of a civil appeal. Blasting-induced vibration is representative construction pollution, hence, it is possible that a number of environmental damages occur. In this study, borehole test blasting was conducted at Sintanjin area, Daejeon and square root equation with 95% confidence level was proposed for prediction of blasting-induced vibration. The vibration value predicted from this equation was more conservatively evaluated than the values predicted from U.S. Department of Interior, Bureau of Mines (USBM) and Nippon Oil & Fats Co., Ltd. (NOF) equations. Therefore, the proposed equation in this study seems to contribute for safety blast design. However, for optimal blast design, inducing equation for prediction of blasting-induced vibration through the identical test blasting with field construction such as rock slope blasting would be required.

Comparative review and interpretation of the conventional and new methods in blast vibration analyses

  • Uyar, G. Gulsev;Aksoy, C.O.
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.545-554
    • /
    • 2019
  • The customary approach used in the blast vibration analysis is to derive empirical relations between the peak particle velocities of blast-induced waves and the scaled distance, and to develop patterns limiting the amounts of explosives. During the periods when excavations involving blasting were performed at sites far from residential areas and infrastructure works, this method based on empirical correlations could be effective in reducing vibrations. However, blasting procedures applied by the fast-moving mining and construction industries today can be very close to, in particular cities, residential areas, pipelines, geothermal sites, etc., and this reveals the need to minimize blast vibrations not only by limiting the use of explosives, but also employing new scientific and technological methods. The conventional methodology in minimizing blast vibrations involves the steps of i) measuring by seismograph peak particle velocity induced by blasting, ii) defining ground transmission constants between the blasting area and the target station, iii) finding out the empirical relation involving the propagation of seismic waves, and iv) employing this relation to identify highest amount of explosive that may safely be fired at a time for blasting. This paper addresses practical difficulties during the implementation of this conventional method, particularly the defects and errors in data evaluation and analysis; illustrates the disadvantages of the method; emphasizes essential considerations in case the method is implemented; and finally discusses methods that would fit better to the conditions and demands of the present time compared to the conventional method that intrinsically hosts the abovementioned disadvantages.

Optimum Delay Time of Electronic Detonator using Blast-induced Vibration Waveform Composition (발파진동 파형합성을 이용한 전자뇌관의 최적지연초시에 관한 연구)

  • Yoon, Ji-sun;Kim, Do-hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.2
    • /
    • pp.129-139
    • /
    • 2006
  • When blasting by imposing the time difference between two adjacent charge holes, the mutual interference phenomenon occurs depending the feature of blast. This interference phenomenon of blast amplifies or compensates the blast-induced vibration depending on the overlapping mechanism. Thus, this experiment aims at finding out the optimum delay time by measuring the blast vibration data from the single hole blast during the blasting test and composing each blasting waveform, and at proving the its efficiency by applying the composition delay time in the entire cross section. The experiment showed that the blasting-induced vibration was reduced by endowing an optimum delay time of electronic detonator appropriate to the rock quality of construction site compared to the typical delay time (20, 25ms) of existing detonator (non-electric and electric detonator). From these results, the excavation efficiency using blasting could be enhanced..

  • PDF

Guided wave formation in coal mines and associated effects to buildings

  • Uyar, Guzin G.;Babayigit, Ezel
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.923-937
    • /
    • 2016
  • The common prospect in diminishing mine-blast vibration is decreasing vibration with increasing distance. This paper indicates that, contrary to the general expectancy, vibration waves change their forms when they are travelling through the low velocity layer like coal and so-called guided waves moving the vibration waves to longer distances without decreasing their amplitudes. The reason for this unexpected vibration increase is the formation of guided waves in the coal bed which has low density and low seismic velocity with respect to the neighboring layers. The amplitudes of these guided waves, that are capable of traveling long distances depending on the seam thickness, are several times higher than that of the usual vibration waves. This phenomenon can many complaints from the residential areas very far away from the blasting sites. Thus, this unexpected behavior of the coal beds in the surface coal mines should also be considered in vibration minimization studies. This study developed a model to predict the effects of guided waves on the propagation ways of blast-induced vibrations. Therefore, vibration mitigation studies considering the nearby buildings can be focused on these target places.

Relationship between Rock Quality Designation and Blasting Vibration Constant "K" & Decay Constant "n" by Bottom Blasting Pattern (바닥발파에서 암질지수(RQD)와 발파진동상수 K, n의 관계)

  • 천병식;오민열
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.55-68
    • /
    • 1995
  • This paper is the analysis of the relationship between RQD and decay constant, blasting vi bration constant of cube root scaling and square root scaling, through experimental blast ins test in subway construction for excavation of shaft hole by bottom blasting. The magnitude of particle velocity is largely effected by the distance from blasting source, the maximum charge per delay and the properties of ground. In order to verify the effects of ground properties on blast-induced vibration, the relation-ship between magnitude of blasting vibration and Rock Quality Disignation which stands for joint property was studied. The results of test are verified that blasting vibration constant "K" and the absolute value("n") of decay constant relatively increse as RQD increased. According to the result, it can be predict the particle velocity by the blast -induced vibration in bottom blasting pattern.om blasting pattern.

  • PDF