• Title/Summary/Keyword: Blast impact

Search Result 154, Processing Time 0.023 seconds

Damage prediction of RC containment shell under impact and blast loading

  • Pandey, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.6
    • /
    • pp.729-744
    • /
    • 2010
  • There is world wide concern for safety of nuclear power installations after the terrorist attack on World Trade Center in 2001 and several other civilian structures in the last decade. The nuclear containment structure in many countries is a double shell structure (outer shell a RCC and inner a prestressed concrete). The outer reinforced concrete shell protects the inner shell and is designed for external loading like impact and blast. A comparative study of non-linear response of reinforced concrete nuclear containment cylindrical shell subjected to impact of an aircraft (Phantom) and explosion of different amounts of blast charges have been presented here. A material model which takes into account the strain rate sensitivity in dynamic loading situations, plastic and visco-plastic behavior in three dimensional stress state and cracking in tension has been developed earlier and implemented into a finite element code which has been validated with published literature. The analysis has been made using the developed software. Significant conclusions have been drawn for dissimilarity in response (deflections, stresses, cracks etc.) of the shell for impact and blast loading.

Parametric Study on Explosion Impact Response Characteristics of Offshore Installation's Corrugated Blast Wall (해양플랜트 설비 Corrugated Blast Wall의 폭발 충격응답 인자 특성에 관한 파라메트릭 연구)

  • Kim, Bong-Ju;Kim, Byung-Hoon;Sohn, Jung-Min;Paik, Jeom-Kee;Seo, Jung-Kwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.46-54
    • /
    • 2012
  • More than 70% of the accidents that occur on offshore installations stem from hydrocarbon explosions and fires, which, because they involve blast effects and heat, are extremely hazardous and have serious consequences in terms of human health, structural safety, and the surrounding environment. Blast barriers are integral structures in a typical offshore topside module to protect personnel and safety critical equipment by preventing the escalation of events caused by hydrocarbon explosions. Many researchers have shown the adequacy of the simple design tool commonly used by the offshore industry for the analysis and design of blast walls. However, limited information is available for corrugated blast wall design with explosion impact response characteristics. Therefore, this paper presents a parametric study on the explosion impact response characteristics of an offshore installation's stainless steel corrugated blast wall. This paperalso investigates and recommends design parameters for the structural design of a corrugated blast wall based on a nonlinear structural analysis of experiential results.

Preliminary Structural Design of Blast Hardened Bulkhead (The 1st Report : Formulation of Simplified Structural Analysis/Design Method) (폭발강화격벽의 초기구조설계에 관한 연구 (제1보 : 간이 구조 해석/설계 기법 정식화))

  • Nho, In Sik;Park, Man-Jae;Cho, Yun Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.371-378
    • /
    • 2018
  • Internal detonation of a warhead inside a compartment of naval vessel can result in serious blast damages including plastic deformation and rupture of the structural members especially bulkhead due to the huge explosive impact pressure, fragments and high temperature flame. To secure watertight integrity and to prevent the domino-type flooding of neighbouring compartments caused by the rupture of bulkheads, it is necessary to develop the structural design technology of Blast Hardened Bulkheads(BHB) which can resist the blast impact pressure of threatening weapons to increase the survivability of naval vessels. This study dealt with the simplified structural response analysis of BHB under impact pressure of confined explosion and aimed to develop the efficient and rational design method of BHB and joint structures which can be applied at initial design stage. The present 1st report dealt with the phenomena of explosive detonation surveying the preceding experimental/theoretical research and the characteristics of time history of blast pressure including the peak value and duration time were examined. And to predict the large plastic deformation behaviors of BHB by the huge blast pressure reasonably, the plastic hinge method including the membrane effects was formulated. It was applied to the simplified structural design equations. The following report will deal with the application and adjustment process of the structural scantling equations to the actual BHB design and verification of validity of them.

Design Optimization of Blast and Ballistic Impact Resistance Sandwich Panels Based on Kriging Approximate Models (크리깅 근사모델기반 복합충격 저항 샌드위치 패널 최적설계)

  • Jang, Sungwoo;Baik, Woon-Kyoung;Choi, Hae-Jin;Park, Soon Suk
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.4
    • /
    • pp.367-374
    • /
    • 2015
  • Sandwich panels consisting of various materials have widely been applied for mitigating dynamic impacts such as ballistic and blast impacts. Especially, the selection of materials for different core set-ups can directly influence its performance. In this study, we design the sandwich panels for alleviating ballistic and blast impacts by controlling the stacking sequence of core materials and their thicknesses. FEM studies are performed to simulate the dynamic behavior of sandwich panels subjected to ballistic and blast impacts. Delamination between the core layers is also considered in the FEM studies for feasible design. Based on the FEM data, kriging models are generated for approximating design space and quickly predicting the FEM outputs. Finally, design optimizations are implemented to find the optimum stacking sequence of core materials and thicknesses with given impact situations.

Modelling the dynamic response and failure modes of reinforced concrete structures subjected to blast and impact loading

  • Ngo, Tuan;Mendis, Priyan
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.269-282
    • /
    • 2009
  • Responding to the threat of terrorist attacks around the world, numerous studies have been conducted to search for new methods of vulnerability assessment and protective technologies for critical infrastructure under extreme bomb blasts or high velocity impacts. In this paper, a two-dimensional behavioral rate dependent lattice model (RDLM) capable of analyzing reinforced concrete members subjected to blast and impact loading is presented. The model inherently takes into account several major influencing factors: the progressive cracking of concrete in tension, the inelastic response in compression, the yielding of reinforcing steel, and strain rate sensitivity of both concrete and steel. A computer code using the explicit algorithm was developed based on the proposed lattice model. The explicit code along with the proposed numerical model was validated using experimental test results from the Woomera blast trial.

Performance of sandwich structure strengthened by pyramid cover under blast effect

  • Mazek, Sherif A.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.4
    • /
    • pp.471-486
    • /
    • 2014
  • The number of explosive attacks on civilian structures has recently increased. Protection of structure subjected to blast load remains quite sophisticated to predict. The use of the pyramid cover system (PCS) to strengthen sandwich structures against a blast terror has great interests from engineering experts in structural retrofitting. The sandwich steel structure performance under the impact of blast wave effect is highlighted. A 3-D numerical model is proposed to study the PCS layer to strengthen sandwich steel structures using finite element analysis (FEA). Hexagonal core sandwich (XCS) steel panels are used to study structural retrofitting using the PCS layer. Field blast test is conducted. The study presents a comparison between the results obtained by both the field blast test and the FEA to validate the accuracy of the 3-D finite element model. The effects are expressed in terms of displacement-time history of the sandwich steel panels and pressure-time history effect on the sandwich steel panels as the explosive wave propagates. The results obtained by the field blast test have a good agreement with those obtained by the numerical model. The PCS layer improves the sandwich steel panel performance under impact of detonating different TNT explosive charges.

Predicting Potential Epidemics of Rice Leaf Blast Disease Using Climate Scenarios from the Best Global Climate Model Selected for Individual Agro-Climatic Zones in Korea (국내 농업기후지대 별 최적기후모형 선정을 통한 미래 벼 도열병 발생 위험도 예측)

  • Lee, Seongkyu;Kim, Kwang-Hyung
    • Journal of Climate Change Research
    • /
    • v.9 no.2
    • /
    • pp.133-142
    • /
    • 2018
  • Climate change will affect not only the crop productivity but also the pattern of rice disease epidemics in Korea. Impact assessments for the climate change are conducted using various climate change scenarios from many global climate models (GCM), such as a scenario from a best GCM or scenarios from multiple GCMs, or a combination of both. Here, we evaluated the feasibility of using a climate change scenario from the best GCM for the impact assessment on the potential epidemics of a rice leaf blast disease in Korea, in comparison to a multi?model ensemble (MME) scenario from multiple GCMs. For this, this study involves analyses of disease simulation using an epidemiological model, EPIRICE?LB, which was validated for Korean rice paddy fields. We then assessed likely changes in disease epidemics using the best GCM selected for individual agro?climatic zones and MME scenarios constructed by running 11 GCMs. As a result, the simulated incidence of leaf blast epidemics gradually decreased over the future periods both from the best GCM and MME. The results from this study emphasized that the best GCM selection approach resulted in comparable performance to the MME approach for the climate change impact assessment on rice leaf blast epidemic in Korea.

Structural impact response characteristics of an explosion-resistant profiled blast walls in arctic conditions

  • Sohn, Jung Min;Kim, Sang Jin;Seong, Dong Jin;Kim, Bong Ju;Ha, Yeon Chul;Seo, Jung Kwan;Paik, Jeom Kee
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.755-771
    • /
    • 2014
  • Environmental changes, especially global climate change, are creating new challenges to the development of the Arctic regions, which have substantial energy resources. And attention to offshore structures has increased with oil and gas development. The structural impact response of an explosion-resistant profiled blast walls normally changes when it operates in low temperatures. The main objectives of this study are to investigate the structural response of blast walls in low temperature and suggest useful guidelines for understanding the characteristics of the structural impact response of blast walls subjected to hydrocarbon explosions in Arctic conditions. The target temperatures were based on the average summer temperature ($-20^{\circ}C$), the average winter temperature ($-40^{\circ}C$) and the coldest temperature recorded (approximately $-68^{\circ}C$) in the Arctic. The nonlinear finite element analysis was performed to design an explosion-resistant profiled blast wall for use in Arctic conditions based on the behaviour of material properties at low temperatures established by performing a tensile test. The conclusions and implications of the findings are discussed.

Numerical Analysis of Steel-strengthened Concrete Panels Exposed to Effects of Blast Wave and Fragment Impact Load Using Multi-solver Coupling (폭풍파 및 파편 충돌에 대한 강판보강 콘크리트 패널의 복합적 수치해석)

  • Yun, Sung-Hwan;Park, Taehyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1A
    • /
    • pp.25-33
    • /
    • 2011
  • The impact damage behavior of steel-strengthened concrete panels exposed to explosive loading is investigated. Since real explosion experiments require the vast costs to facilities as well as the blast and impact damage mechanisms are too complicated, numerical analysis has lately become a subject of special attention. However, for engineering problems involving blast wave and fragment impact, there is no single numerical method that is appropriate to the various problems. In order to evaluate the retrofit performance of a steel-strengthened concrete panel subject to blast wave and fragment impact loading, an explicit analysis program, AUTODYN is used in this work. The multi-solver coupling methods such as Euler-Lagrange and SPH-Lagrange coupling method in order to improve efficiency and accuracy of numerical analysis is implemented. The simplified and idealized two dimensional and axisymmetric models are used in order to obtain a reasonable computation running time. As a result of the analysis, concrete panels subject to either blast wave or fragment impact loading without the steel plate are shown the scabbing and perforation. The perforation can be prevented by concrete panels reinforced with steel plate. The numerical results show good agreement with the results of the experiments.

Control of Blast Vibration, Air Blast, and Fly Rock in Rock Excavation (암반굴착에 의한 발파진동, 소음 및 비석의 조절)

  • Ryu, Chang-Ha
    • Tunnel and Underground Space
    • /
    • v.2 no.1
    • /
    • pp.102-115
    • /
    • 1992
  • Blasting operations associated with rock excavation work may have an environmental impact in nearby structures or human beings. With the increase of construction work in urban areas, vibration problems and complaints have also increased. In order to determine the optimum design parameters for safe blast, it is essential to understand blast mechanism, design variables involved in blast-induced damage, and their effects on the blasting results. This paper deals with the characteristics of ground vibrations, air blast and fly rock caused by blast, including the general method of establishing the vibration predictors, and damage criteria suggested by various investigators. The results of field measurements from open pit mine and tunnel construction work are discussed. Basic concepts of how to design blast parameters to control the generation of ground vibrations, air blast and fly rock are presented.

  • PDF