• Title/Summary/Keyword: Blast Resistance

Search Result 532, Processing Time 0.033 seconds

Population Structure and Race Variation of the Rice Blast Fungus

  • Seogchan;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • Worldwide, rice blast, caused by Magnaporthe grisea (Hebert) Barr. (anamorph, Pyricularia grisea Sacc.), is one of the most economically devastating crop diseases. Management of rice blast through the breeding of blast-resistant varieties has had only limited xuccess due to the frequent breakdown of resistance under field conditions (Bonman etal., 1992; Correa-Victoria and Zeigler, 1991; Kiyosawa, 1982). The frequent variation of race in pathogen populations has been proposed as the principal mechanism involved in the loss of resistance (Ou, 1980). Although it is generally accepted that race change in M. grisea occurs in nature, the degree of its variability has been a controversial subject. A number of studies have reported the appearance of new races at extremely high rates (Giatgong and Frederiksen, 1968; Ou and Ayad, 1968; Ou et al., 1970; Ou et al., 1971). Various potential mechanisms, including heterokaryosis (Suzuki, 1965), parasexual recombination (Genovesi and Magill, 1976), and aneuploidy (Kameswar Row et al., 1985; Ou, 1980), have been proposed to explain frequent race changes. In contrast, other studies have shown that although race change could occur, its frequency was much lower than that predicted by earlier studies (Bonman et al., 1987; Latterell and Rossi, 1986; Marchetti et al., 1976). Although questions about the frequency of race changes in M. grisea remain unanswered, the application of molecular genetic tools to study the fungus, ranging from its genes controlling host specificity to its population sturctures and dynamics, have begun to provide new insights into the potential mechanisms underlying race variation. In this review we aim to provide an overview on (a) the molecular basis of host specificity of M. grisea, (b) the population structure and dynamics of rice pathogens, and (c) the nature and mechanisms of genetic changes underpinning virulence variation in M. grisea.

  • PDF

Lysimachia foenum-graecum Herba Extract, a Novel Biopesticide, Inhibits ABC Transporter Genes and Mycelial Growth of Magnaporthe oryzae

  • Lee, Youngjin
    • The Plant Pathology Journal
    • /
    • v.32 no.1
    • /
    • pp.8-15
    • /
    • 2016
  • To identify a novel biopesticide controlling rice blast disease caused by Magnaporthe oryzae, 700 plant extracts were evaluated for their inhibitory effects on mycelial growth of M. oryzae. The L. foenum-graecum Herba extract showed the lowest inhibition concentration ($IC_{50}$) of $39.28{\mu}g/ml$, which is lower than the $IC_{50}$ of blasticidin S ($63.06{\mu}g/ml$), a conventional fungicide for rice blast disease. When treatments were combined, the $IC_{50}$ of blasticidin S was dramatically reduced to $10.67{\mu}g/ml$. Since ABC transporter genes are involved in fungicide resistance of many organisms, we performed RT-PCR to investigate the transcriptional changes of 40 ABC transporter family genes of M. oryzae treated with the plant extract, blasticidin S, and tetrandrine, a recognized ABC transporter inhibitor. Four ABC transporter genes were prominently activated by blasticidin S treatment, but were suppressed by combinational treatment of blasticidin S with the plant extract, or with tetrandrine that didn't show cellular toxicity by itself in this study. Mycelial death was detected via confocal microscopy at 24 h after plant extract treatment. Finally, subsequent rice field study revealed that the plant extract had high control efficacy of 63.3% and should be considered a biopesticide for rice blast disease. These results showed that extract of L. foenum graecum Herba suppresses M. oryzae ABC transporter genes inducing mycelial death and therefore may be a potent novel biopesticide.

Mechanical and Electrical Properties of Low-Cement Mortar Using a Large Amount of Industrial By-Products (산업부산물을 다량활용한 저시멘트 모르타르의 역학적·전기적 특성)

  • Kim, Young-Min;Im, Geon-Woo;Lim, Chang-Min;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.43-44
    • /
    • 2023
  • This study evaluated the mechanical and electrical properties of low-cement mortar using a large amount of industrial by-products to reduce carbon emissions from the cement industry. As types of industrial by-products, blast furnace slag and fly ash, which are representative materials, were used, and ultra-high fly ash was mixed and evaluated to solve the problem of initial strength loss. In addition, in order to evaluate the electrical properties, 1% of MWCNT was incorporated relative to the powder mass. As experimental items, the compressive strength was measured on the 1st, 3rd, 7th and 28th days of age, and the rate of change in electrical resistance was measured on the 28th day of age. As a result of the experiment, the initial strength of the test specimen mixed with blast furnace slag and fly ash was significantly lower than that of 100% cement, and the specimen mixed with blast furnace slag showed strength equal to that of cement at 28 days of age. As an electrical characteristic, the electrical resistance was reduced when the load was loaded, and this reason is judged to be the effect of improving the conductivity as the connection between CNTs is narrowed by the compressive load.

  • PDF

Fire Resistance Performance Test of High Strength Concrete by Type of Mineral Admixture (혼화재 종류에 따른 고강도 콘크리트의 내화성능 평가)

  • Kwon, Ki-Seok;Ryu, Dong-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.6
    • /
    • pp.597-605
    • /
    • 2015
  • The method of concrete mix design used in this study aims to achieve the identical specified design strength, applying different types and replacement ratio of mineral admixtures and afterwards, fire tests were conducted using the standard time-temperature curve specified in the ASTM E119 to identify the influences of the types of mineral admixtures on the fire resistance performance of high strength concrete(HSC). The least spalling was observed in the test specimen containing blast furnace slag as a partial replacement of cement, while the most significant spalling phenomena were observed in the blast furnace slag test specimen that silica-fume was added in. In particular, the reasonable volume of spalling was observed when solely replaced by silica fume. However, the influence of the cement replacement by silica fume and blast furnace slag on the increases of spalling can be explained through blocked pores by the fine particles of silica fume, leading to decreases in permeability.

An Experimental Study on the Carbonation and Drying Shrinkage of Concrete Using High Volumes of Ground Granulated Blast-furnace Slag (고로슬래그 미분말을 대량 사용한 콘크리트의 건조수축 및 중성화에 관한 실험적 연구)

  • Ryu, Dong-Woo;Kim, Woo-Jae;Yang, Wan-Hee;Park, Dong-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.393-400
    • /
    • 2012
  • The effect of ground granulated blast-furnace slag (GGBS) and alkaline activator on the properties of setting, compressive strength, drying shrinkage and resistance of carbonation was assessed to develop high volume slag concrete, the GGBS replacement rate of which was more than 80 percent. The changes in the concrete as the replacement rate of GGBS increases were as follows. Initial and final setting time was delayed by two and a half hours, and the compressive strength development properties of concrete in early and long term age were decreased. Drying shrinkage was satisfactory as below $6{\times}10^{-4}$ in every mixture, and yet showed a tangible trend by replacement rate. Carbonation was materially increased. Setting time and early strength development property, however, were extremely advanced by the addition of the alkaline activator. While drying shrinkage was improved by the alkaline activator, resistance to carbonation was not.

Evaluating Local Damages and Blast Resistance of RC Slabs Subjected to Contact Detonation (접촉 폭발 하중을 받는 RC 슬래브의 국부 손상 및 내폭 성능 평가)

  • Li, Ling;Lee, Jin Young;Min, Kyung Hwan;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.37-45
    • /
    • 2013
  • In this study, the resistance of various reinforced concrete (RC) slabs subjected to contact detonation was assessed. In order to enhance the blast resistance, fibers and external FRP sheets were reinforced to RC slabs. In the experiment, the $2,000{\times}1,000{\times}100mm$ sized RC slabs were fabricated using normal concrete (NC), steel fiber reinforced concrete (SFRC), polyvinyl alcohol fiber reinforced cementitious composite (PVA FRCC), and ultra-high performance cementitious composites (UHPCC). The damage levels of RC slabs subjected to contact detonation were evaluated by measuring the diameter and depth of crater, spall and breach. The experimental results were compared to the analyzed data using LS-DYNA program and three different prediction equations. The diameter and depth of crater, spall and breach were able to be predicted using LS-DYNA program approximately. The damage process of RC slabs under blast load was also well expressed. Three prediction equations suggested by other researchers had limitations to apply in terms of empirical approaches, therefore it needs further research to set more analytical considerations.

Pyramiding Resistance Genes to leaf Blast in Rice through $F_1$ Hybrid (벼의 $F_1$ Hybrid를 이용한 도열병 저항성 유전자 집적)

  • Hak Soo, Suh;Mun Hue, Heu;F.L., Nuque
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.4
    • /
    • pp.462-465
    • /
    • 1987
  • Three F$_1$ hybrids, Seokwang/Milyang 54, HR1619-6-2-1-2-2/Milyang 54 and 55061/IR19735-5-2-3-2-1, and their parents were inoculated with each of four individual blast races, IC-l3, IH-l, IA-61 and IB-47, and the mixtures of two races, IC-13 and IH-l, IC-13 and IA-61, and IC-13 and IB-47, respectively. The varietal reactions to the tested races showed that two parental varieties of each cross, Seokwang and Milyang 54, HR1619-6-2-1-2-2 and Milyang 54, and 55061 and IR19735-5-2-3-2-1 have different resistance gene(s) respectively. The F 1 hybrids between two cultivars having different resistant genes were resistant to the mixture of two races of which one race was virulent to one parent and avirulent to the other parent respectively, while the parents of these F$_1$s were susceptible. This may suggest that the F$_1$ hybrids have wider spectrum resistance to leaf blast than their parents.

  • PDF