• 제목/요약/키워드: Blast Load

검색결과 216건 처리시간 0.023초

Experimental and numerical investigation of RC sandwich panels with helical springs under free air blast loads

  • Rashad, Mohamed;Wahab, Mostafa M.A.;Yang, T.Y.
    • Steel and Composite Structures
    • /
    • 제30권3호
    • /
    • pp.217-230
    • /
    • 2019
  • One of the most important design criteria in underground structure is to design lightweight protective layers to resist significant blast loads. Sandwich blast resistant panels are commonly used to protect underground structures. The front face of the sandwich panel is designed to resist the blast load and the core is designed to mitigate the blast energy from reaching the back panel. The design is to allow the sandwich panel to be repaired efficiently. Hence, the underground structure can be used under repeated blast loads. In this study, a novel sandwich panel, named RC panel - Helical springs- RC panel (RHR) sandwich panel, which consists of normal strength reinforced concrete (RC) panels at the front and the back and steel compression helical springs in the middle, is proposed. In this study, a detailed 3D nonlinear numerical analysis is proposed using the nonlinear finite element software, AUTODYN. The accuracy of the blast load and RHR Sandwich panel modelling are validated using available experimental results. The results show that the proposed finite element model can be used efficiently and effectively to simulate the nonlinear dynamic behaviour of the newly proposed RHR sandwich panels under different ranges of free air blast loads. Detailed parameter study is then conducted using the validated finite element model. The results show that the newly proposed RHR sandwich panel can be used as a reliable and effective lightweight protective layer for underground structures.

주철근의 개수 및 단면비에 따른 폭발하중을 받는 철근콘크리트 기둥의 해석적 연구 (Parametric Study on Reinforced Concrete Columns under Blast Load)

  • 최호순;김민숙;이영학
    • 한국전산구조공학회논문집
    • /
    • 제25권3호
    • /
    • pp.219-226
    • /
    • 2012
  • 기둥은 건물에서 하중을 지지하는 중요한 구성요소이므로 기둥의 손상 또는 파괴는 건물의 연쇄붕괴의 원인이 된다. 특히 폭발하중에 의한 기둥의 거동평가는 연쇄붕괴 방지에 있어 중요한 요소이다. 본 논문에서는 축하중을 받고 있는 기둥이 폭발하중을 받을 때의 거동과 폭발 저항성능을 평가하였다. 이를 위해 동일단면적과 비슷한 철근비를 가지는 기둥에서 주 철근의 개수를 달리하여 각 변수에 따른 폭발하중에 대한 폭발 저항성능을 평가하였다. 또한, 동일한 성능을 지니는 기둥에서 단면비를 달리하여 기둥의 폭발 저항성능을 비교하였다. 해석결과, 폭발 직후 충격량에 대한 수직 변형률은 철근의 개수 및 단면비에 영향을 받지 않는 것으로 나타났다. 그러나 수평변형의 경우 폭발압력을 받는 면의 철근 개수가 증가함에 따라 기둥의 저항성능이 증가하는 것으로 나타났다. 또한, 기둥 단면의 단면 2차모멘트가 클수록 폭발하중에 대한 저항 성능 및 복원력이 더 큰 것을 확인하였다.

고로슬래그 미분말을 혼입한 프리캐스트 박스 암거의 휨 강도에 관한 연구 (A Study on Flexural Behavior of Precast Box Culvert with Blast Slag)

  • 태기호;김두환
    • 한국안전학회지
    • /
    • 제27권2호
    • /
    • pp.25-32
    • /
    • 2012
  • In this study, the effect of blast furnace slag on precast concrete culvert was assessed by measuring the flexural strength using to full scaled box culvert. As a result, the initial cracking load and yield load of reinforced concrete box converts are increased in comparison with those of the normal concrete box culvert, but the ultimate load is decreased slightly. It can be concluded that use of blast furnace slag induce to flexural strength in precast concrete box culvert greatly improved the serviceability.

블라스트 표면처리가 하중비전달형 십자필렛 용접이음의 피로거동에 미치는 영향 (Effect of Blast Cleaning on Fatigue Behavior of Non-load-carrying Fillet Welded Cruciform Joints)

  • 김인태;정영수;김광진;이동욱
    • 한국강구조학회 논문집
    • /
    • 제21권1호
    • /
    • pp.55-62
    • /
    • 2009
  • 강교 제작에는 강재 표면의 이물질 제거와 피복방식재료의 부착성 증대를 위하여 블라스트 표면처리가 실시되고 있다. 블라스트 표면처리는 쇼트나 그릿 등의 연마재를 압축공기로 분사하여 강재 표면에 충격을 가하는 표면처리법으로, 블라스트 처리에 의해 표면형상이 개선되고 압축잔류응력이 도입되어 용접이음의 피로수명이 향상될 것으로 예상된다. 본 연구에서는 하중비전달형 십자필렛 용접이음의 피로실험을 실시하여, 블라스트 표면처리가 용접이음의 피로거동에 미치는 영향을 실험적으로 검토하였다. 피로실험에는 용접 후 무처리 시험편(용접 그대로), 용접 후 블라스트 표면처리 한 시험편과 블라스트 처리 후 열처리에 의해 잔류응력을 제거한 시험편의 합계 3종류의 용접시험편을 대상으로 하였다. 그 결과 블라스트 표면처리에 의해 용접지단부의 곡률반경은 약 29% 증가하였으며, 용접지단부의 인장잔류응력이 제거되고 압축잔류응력이 도입되었다. 그리고 블라스트 처리에 의해 피로수명과 피로한계가 증가하였다. 피로수명은 응력범위가 낮을수록 더 크게 증가하였고, 피로한계는 약 1.5배 증가하였다.

Explosion induced dynamic responses of blast wall on FPSO topside: Blast loading application methods

  • Kang, Ki-Yeob;Choi, Kwang-Ho;Choi, Jae Woong;Ryu, Yong Hee;Lee, Jae-Myung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권2호
    • /
    • pp.135-148
    • /
    • 2017
  • Topside areas on an offshore oil and gas platform are highly susceptible to explosion. A blast wall on these areas plays an important role in preventing explosion damage and must withstand the expected explosion loads. The uniformly distributed loading condition, predicted by Explosion Risk Analyses (ERAs), has been applied in most of the previous analysis methods. However, analysis methods related to load conditions are inaccurate because the blast overpressure around the wall tends to be of low-level in the open area and high-level in the enclosed area. The main objectives of this paper are to study the effects of applying different load applications and compare the dynamic responses of the blast wall. To do so, various kinds of blast pressures were measured by Computational Fluid Dynamics (CFD) simulations on the target area. Nonlinear finite element analyses of the blast wall under two types of identified dynamic loadings were also conducted.

Numerical formulation of P-I diagrams for blast damage prediction and safety assessment of RC panels

  • Mussa, Mohamed H.;Mutalib, Azrul A.;Hao, Hong
    • Structural Engineering and Mechanics
    • /
    • 제75권5호
    • /
    • pp.607-620
    • /
    • 2020
  • A numerical study is carried out to assess the dynamic response and damage level of one- and two-way reinforced concrete (RC) panels subjected to explosive loads by using finite element LS-DYNA software. The precision of the numerical models is validated with the previous experimental test. The calibrated models are used to conduct a series of parametric studies to evaluate the effects of panel wall dimensions, concrete strength, and steel reinforcement ratio on the blast-resistant capacity of the panel under various magnitudes of blast load. The results are used to develop pressure-impulse (P-I) diagrams corresponding to the damage levels defined according to UFC-3-340-02 manual. Empirical equations are proposed to easily construct the P-I diagrams of RC panels that can be efficiently used to assess its safety level against blast loads.

P-I 곡선을 이용한 충격압력하중을 받는 철근 콘크리트 보의 손상해석 (Damage Analysis of RC Beams Subjected to Blast Load Using P-I Diagram)

  • 조정희;남진원;김호진;최형진;송하원;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.438-441
    • /
    • 2006
  • Since the behavior of structural members subjected to blast load shows different responses, the effect of impulse as well as peak load should be considered in the damage analysis. The threshold on P-I diagram that causes specific damage level divides the diagram into the failure zone and the non-failure zones. In this study, numerical analysis is performed based on single-degree-of-freedom (SDOF) techniques to generate rational P-I diagram considering material non-linearity and dual failure modes (flexure and direct shear) of RC beams. From the comparison with existing test results it is concluded that proposed numerical method is good to derive failure mode of RC beam under blast load.

  • PDF

Pressure impulse diagrams for simply-supported steel columns based on residual load-carrying capacities

  • Park, Jong Yil;Krauthammer, Theodor
    • Structural Engineering and Mechanics
    • /
    • 제39권2호
    • /
    • pp.287-301
    • /
    • 2011
  • This paper is focused on the residual capacity of steel columns, as a damage criterion. Load-Impulse (P-I) diagrams are frequently used for analysis, design, or assessment of blast resistant structures. The residual load carrying capacity of a simply supported steel column was derived as a damage criterion based on a SDOF computational approach. Dimensionless P-I diagrams were generated numerically with this quantitative damage criterion. These numerical P-I diagrams were used to show that traditional constant ductility ratios adopted as damage criteria are not appropriate for either the design or damage assessment of blast resistant steel columns, and that the current approach could be a much more appropriate alternative.

터널 굴착 발파하중 시간이력 생성 (Generation of blast load time series under tunnelling)

  • 안재광;박두희;신영완;박인준
    • 한국터널지하공간학회 논문집
    • /
    • 제16권1호
    • /
    • pp.51-61
    • /
    • 2014
  • 발파가 인근 시설물에 미치는 영향을 수치적으로 규명하기 위해서는 발파하중 시간이력을 적용한 동적 해석을 수행해야 한다. 발파하중은 실측하기 어렵기에 다양한 참고문헌에서 제시된 경험적 시간이력이 일반적으로 사용된다. 경험적 폭굉압과 시간이력은 다양한 환경변수를 고려하여 보정해야 하지만 이에 대한 가이드라인이 명확하게 제시되지 않아 해석에 어려움이 있다. 본 연구에서는 시험발파를 모사하는 2차원 동적 수치해석을 수행하여 계측기록과 상응하는 경험적 발파하중 시간이력을 도출하였다. 발파로 인한 파쇄영역은 원형으로 가정하여 모델링 하였으며 발파하중을 경계벽에 수직방향으로 재하하였다. 특히, 해석 결과에 지반의 감쇠비는 큰 영향을 미칠 수 있으므로 이를 정확하게 산정해야 한다. 시험적으로 계산된 감쇠식의 기울기는 발파하중의 크기에는 영향을 받지 않으며 하중의 주파수와 지반의 감쇠비에 의해서만 결정되므로 지반 감쇠비는 발파 감쇠식에 상응하도록 결정하였다. 해석 결과, 발파하중은 암반의 파쇄에 소요되는 에너지 손실을 고려하지 않으므로 이를 보정없이 적용할 경우 발파로 인하여 유발되는 진동을 크게 과대예측하므로 이를 감소시켜야 하는 것으로 나타났다.

Application of Lagrangian approach to generate P-I diagrams for RC columns exposed to extreme dynamic loading

  • Zhang, Chunwei;Abedini, Masoud
    • Advances in concrete construction
    • /
    • 제14권3호
    • /
    • pp.153-167
    • /
    • 2022
  • The interaction between blast load and structures, as well as the interaction among structural members may well affect the structural response and damages. Therefore, it is necessary to analyse more realistic reinforced concrete structures in order to gain an extensive knowledge on the possible structural response under blast load effect. Among all the civilian structures, columns are considered to be the most vulnerable to terrorist threat and hence detailed investigation in the dynamic response of these structures is essential. Therefore, current research examines the effect of blast loads on the reinforced concrete columns via development of Pressure- Impulse (P-I) diagrams. In the finite element analysis, the level of damage on each of the aforementioned RC column will be assessed and the response of the RC columns when subjected to explosive loads will also be identified. Numerical models carried out using LS-DYNA were compared with experimental results. It was shown that the model yields a reliable prediction of damage on all RC columns. Validation study is conducted based on the experimental test to investigate the accuracy of finite element models to represent the behaviour of the models. The blast load application in the current research is determined based on the Lagrangian approach. To develop the designated P-I curves, damage assessment criteria are used based on the residual capacity of column. Intensive investigations are implemented to assess the effect of column dimension, concrete and steel properties and reinforcement ratio on the P-I diagram of RC columns. The produced P-I models can be applied by designers to predict the damage of new columns and to assess existing columns subjected to different blast load conditions.