• 제목/요약/키워드: Blank Design

검색결과 304건 처리시간 0.023초

유한요소법을 이용한 역추적기법 개발 및 판재성형의 초기블랭크 형상설계에 적용 (Development of the Backward Tracing Scheme of FEM and Its Application to Initial Blank Design in Sheet Metal Forming)

  • 최한호;강경주;구태완;임학진;황상문;강범수
    • 소성∙가공
    • /
    • 제9권4호
    • /
    • pp.348-355
    • /
    • 2000
  • The backward tracing scheme(BWT) of the finite element method has been extended lot the design of sheet blank in three-dimensional deformation. Originally the scheme was developed for preform design in bulk forming, and applied to several forming processes successfully. Its key concept is to trace backward from the final desirable configuration to an intermediate preform or initial blocker. A program for initial blank design in sheet forming which contains the capabilities of forward loading simulation by the finite element method and backward tracing simulation, has been developed and proved the effectiveness by applying to a square cup stamping process. In the blank design of square cup stamping, the backward tracing program can produce an optimum blank configuration which forms a sound net-shape cup product without machining after forming. For the confirmation of the analytic result derived from the backward tracing simulations as well as forward loading simulations, a series of experiment were carried out. The experiments include the first trial sheet forming process with a rectangular blank, an improved process with a modified blank preform and the final process with an optimum blank resulted from the backward tracing scheme. The experiments show that the backward tracing scheme has been implemented successfully in blank design of sheet metal forming.

  • PDF

다단계 디프드로잉가공에서의 소재형상설계 및 성형성 (The blank design and the formability for the multi-stage deep drawing process)

  • 박민호;김상진;서대교
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 추계학술대회논문집
    • /
    • pp.111-118
    • /
    • 1995
  • A method of determining an optimum blank shape for the non circular deep drawing process is more investigated and applied to the balnk design for multi-stage deep drawn product. The forming procedure of two-stage deep drawing process is looked over and the method of determining a blank shape is proposed. In experimental research, a optimum blank and a optional rectangular blank were considered and we measured thickness strain distributions. We could predict a strain distribution and compare with a experimental strain distribution. Also, the strain distributions for the blank shapes, optimum and rectangular, were compared.

  • PDF

자동차용 알루미늄 합금 정형의 스탬핑 부품 성형을 위한 CAE 기법 개발 (A CAE Approach for Net-Shape Automobile Stamping Components of Aluminum Alloy)

  • 최한호;구태완;황상문;강범수
    • 한국정밀공학회지
    • /
    • 제16권10호
    • /
    • pp.164-171
    • /
    • 1999
  • An optimum blank design technology is required for near-net of net-shape cold forming using sheets. Originally, the backward tracing scheme has been developed for preform design in bulk forming, and applied to several forming processes successfully. Its key concept is to trace backward from the final desirable configuration to an intermediate preform of initial blocker. A program for initial blank design in sheet forming which contains the capabilities of forward loading simulation by the finite element method and backward tracing simulation, has been developed and proved the effectiveness by applying to a square cup stamping process. In the blank design of square cup stamping, the backward tracing program can produce an optimum blank configuration which forms a sound net-shape cup product without machining after forming. Another general application appears in the blank design of a cup stamping with protruding flanges, one of typical automobile components. The blank configurations derived by backward tracing simulation have been confirmed by a series of loading simulations. The approach or decision of an initial blank configuration presented in this study will be a milestone in fields of sheet forming process design.

  • PDF

자동차 모터 프레임 금형에서 블랭크 설계 자동화 시스템의 적용 (Application of Computer Aided Blank Design System for Motor Frame Die, Automobile)

  • 박동환;박상봉;강성수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.753-756
    • /
    • 2000
  • The accumulated know-how and trial-and-error procedures are known as the best ways to determine blank shape and dimensions. One of the most important steps to determine the blank shape and dimensions in deep drawing process is to calculate the surface area of the product. In general, the surface area of products is calculated by mathematical or 3-D modeling methods. A blank design system is constructed for elliptical deep drawing products to recognize the geometry of the product in the long side and short side by drafting in another two layers on AutoCAD software. This system consists of input geometry recognition module, 3-D modeling module and blank design module, respectively. Blank dimension of three types is determined by the same area, which was acquired in 3-D modeling module. The suitability of this system is verified by applying to a real deep drawing product.

  • PDF

스프링백 저감을 고려한 초기블랭크 설계 (Initial Blank Design Considering Springback Reduction)

  • 양우열;이승열;금영탁
    • 소성∙가공
    • /
    • 제12권3호
    • /
    • pp.208-213
    • /
    • 2003
  • The methodology to design initial blanks considering the reduction of both springback and flange trimming amounts is studied. Three dimensional forming analysis of a trial blank Is first carried out using FEM and the tentative Initial blank shape is then determined by cutting the outer edge of the trial blank whose shape is nearly matched with the trimming line. During the shaping the blank edge, tile movement of blank outer line is described with random variables to reduce the sensitivity of initial blank geometry. After performing 2-D FEM forming and springback simulations for selected sections and optimizing the trimming and springback amounts in terms of section length of the blank, the initial blank is finally determined. In order to see tile springback reduction in the initial blank determined by the proposed method, a stepped s-rail is stamped and the sppingback is measured. The springback of newly designed initial blank of stopped s-tail is tremendously reduced.

다구찌법을 이용한 테일러드 블랭크의 신장플랜지 성형에 미치는 설계 인자의 영향 분석 (Effects of Blank Design factors on Stretch Flange Forming of the Tailored Blank Using Taguchi Method)

  • 백승엽;권재욱;이경돈
    • 소성∙가공
    • /
    • 제9권4호
    • /
    • pp.339-347
    • /
    • 2000
  • For the successful forming of tailored blank, it is important to control the deformation of the stretch flange mode, which is strong1y dependent upon the location of weld line and blank shape. In order to investigate the effects of tailored blank design factors on the stretch flange forming, we made the model die which can simulate stretch flange mode. Taguchi method was employed to analyze the sensitivity of blank design factors for the forming of tailored blank. From the results of experiment S/N ratios were calculated and using Variance Analysis, significance of parameters and optimal condition of each factors were extracted. Based on these analyses, the weld line height and the strength ratio and the arc center height were selected as effective parameter. The analysed result was practically applied for Side outer panel stamping process.

  • PDF

비선형변형경로를 고려한 가변 블랭크 홀딩력을 통한 자동차 판넬의 성형성 향상 (Improvement of Formability in Automobile Panels by Variable Blank Holding Force with Consideration of Nonlinear Deformation Path)

  • 정현기;장은혁;송윤준;정완진
    • 한국정밀공학회지
    • /
    • 제32권11호
    • /
    • pp.945-952
    • /
    • 2015
  • In drawing sheet metal, the blank holding force is applied to prevent wrinkling of the product and to add a tensile stress to the material for the plastic deformation. Applying an inappropriate blank holding force can cause wrinkling or fracture. Therefore, it is important to determine the appropriate blank holding force. Recent developments of the servo cushion open up the possibility to reduce the possibility of fracture and wrinkling by controlling the blank holding force along the stroke. In this study, a method is presented to find the optimal variable blank holding force curve, which uses statistical analysis with consideration of the nonlinear deformation path. The optimal blank holding force curve was numerically and experimentally applied to door inner parts. Consequently, it was shown that the application of the variable blank holding force curve to door inner parts could effectively reduce the possibility of fracture and wrinkling.

해석적인 방법을 이용한 복잡한 형상의 자동차 부재 스탬핑 공정에서의 주요 설계인자 연구 (Study on Design Parameters in a Stamping Process of an Automotive Member with the Simulation-based Approach)

  • 송정한;김세호;김승호;허훈
    • 소성∙가공
    • /
    • 제14권1호
    • /
    • pp.21-28
    • /
    • 2005
  • This paper is concerned with the quantitative effect of design parameters on a stamped part of the auto-body. The considered parameters in this paper are the blank holding force, the draw-bead force, the blank size which greatly affect the metal flow during stamping. The indicators of formability selected in this paper are failures such as tearing, wrinkling and the amount of springback. The stamping process of the front side inner member is simulated using the finite element analysis changing the design parameters. The numerical results demonstrate that the blank holding force cannot control the local metal flow during forming although it controls the overall metal flow. The modification of the initial blank size considering the punch opening line ensures the local wrinkling and reduces the amount of springback after forming. The restraining force of draw-bead controls the metal flow in the local area and reduces the amount of excess metal. It is noted that the parametric study of design parameters such as blank holding force, the blank size and the draw-bead are very important in the process design of the complicated member.

초기 속도법을 이용한 최적 블랭크 설계 프로그램의 개발 (Development of Optimal Blank Shape Design Program Using the Initial Velocity of Boundary Nodes)

  • 심현보;이상헌;손기찬
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.77-81
    • /
    • 2002
  • A new method of optimal blank shape design using the initial nodal velocity (INOV) has been proposed for the drawings of arbitrary shaped cups. With the given information of tool shape and the final product shape, corresponding initial blank shape has been found from the motion of boundary nodes. Although the sensitivity method, the past work of Hynbo Shim and Kichan Son, has been proved to be excellent method to find optimal blank shapes, the method has a problem that a couple of deformation analysis is required at each design step and it also exhibits an abnormal behaviors in the rigid body rotation prevailing region. In the present method INOV, only a single deformation analysis per each design stage is required. Drawings of practical products as well as oil-pan have been chosen as the examples. At every case the optimal blank shapes have been obtained only after a few times of modification without predetermined deformation path. The deformed shape with predicted optimal blank almost coincides with the target shape at every case. Through the investigation the INOV is found to be very effective in the arbitrary shaped drawing process design.

  • PDF

초기 속도법을 이용한 최적 블랭크 설계 프로그램의 개발 (Development of Optimal Blank Shape Design Program Using the Initial Velocity of Boundary Nodes)

  • 심현보;이상헌;손기찬
    • 소성∙가공
    • /
    • 제11권6호
    • /
    • pp.487-494
    • /
    • 2002
  • A new method of optimal blank shape design using the initial nodal velocity (INOV) has been proposed for the drawings of arbitrary shaped cups. With the given information of tool shape and the final product shape, corresponding initial blank shape has been found from the motion of boundary nodes. Although the sensitivity method, the past work of the present authors, has been proved to be excellent method to find optimal blank shapes, the method has a problem that a couple of deformation analysis is required at each design step and it also exhibits an abnormal behaviors in the rigid body rotation prevailing region. In the present method INOV, only a single deformation analysis per each design stage is required. Drawings of practical products as well as oil-pan, have been chosen as the examples. At every case the optimal blank shapes have been obtained only after a few times of modification without predetermined deformation path. The deformed shape with predicted optimal blank almost coincides with the target shape at every case. Through the investigation the INOV is found to be very effective in the arbitrary shaped drawing process design.