• 제목/요약/키워드: Blades

검색결과 1,512건 처리시간 0.023초

한국산 사초과 식물 잎의 표피형에 대하여(6) (A Study of Epidermal Patterns of the Leaf Blades on Korean Sedges, Eriophorum, Fuirena, Kobresia, Rhynchospora and Scirpus(6))

  • 오용자
    • Journal of Plant Biology
    • /
    • 제17권2호
    • /
    • pp.99-105
    • /
    • 1974
  • Author has studied and reported on taxonomy of Korean sedges, using gross morphology, anatomy and epidermal patterns of the leaf blades(1969, 1971, 1973, 1974). This paper is the 6th report of epidermal patterns of leaf blade on sedges and includes 5 genera, Eriophorum, Fuirena, Kobresia, Rhynchospora and Scirpus. The author proposed to find epidermal patterns of leaf blades as an important taxonomic characteristic of sedges classification. The result of this study, the elements of leaf epidermis, subsidal cells, silica body, cell wall of long cell, prickles, and arrangement of the elements are considered to be significant characteristics for the identification and classification of sedge.

  • PDF

첨가된 다이아몬드 abrasive와 윤활제의 함량이 마이크로블레이드의 내구성과 기계적 특성에 미치는 영향 (Effects of diamond abrasive and lubricants on mechanical properties and wearing resistance of microblades)

  • 김송희;문종철;김상우
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2007년도 추계학술대회 논문집
    • /
    • pp.134-135
    • /
    • 2007
  • Graphite and MoS2 were added respectively as a lubricant to improve the cutting efficiency of micro blades which contains diamond abrasive. Strength, fracture toughness, and life span of micro-blades were observed to decrease with the increase in diamond abrasive and lubricant content. Wearing mode of micro-blades and the cutting efficiency were also found to be affected by the content of diamond abrasive and the addition of lubricants.

  • PDF

가스터빈 블레이드 MODAL TEST를 위한 실험적 방법에 관한 연구 (An Experimental Study on the Modal Test of Gas Turbine Blade Integrity)

  • 조철환;양경현;김성휘
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1388-1392
    • /
    • 2001
  • In this paper, an experimental method of several modal analyses was devised to iify the vibration characteristics of G/T blade in power plants. Also, it is being applied this method to establish the standard category of natural frequency of new developed blades. So acceptance margin to avoid resonance due to nozzle waking force is being established for new blades. It is expected to improve the availability of G/T blades by using the result of this study.

  • PDF

Numerical and analytical study of aeroelastic characteristics of wind turbine composite blades

  • Ghasemi, Ahmad Reza;Jahanshir, Arezu;Tarighat, Mohammad Hassan
    • Wind and Structures
    • /
    • 제18권2호
    • /
    • pp.103-116
    • /
    • 2014
  • Aeroelasticity is the main source of instability in structures which are subjected to aerodynamic forces. One of the major reasons of instability is the coupling of bending and torsional vibration of the flexible bodies, which is known as flutter. The presented investigation aims to study the aeroelastic stability of composite blades of wind turbine. Geometry, layup, and loading of the turbine blades made of laminated composites were calculated and evaluated. To study the flutter phenomenon of the blades, two numerical and analytical methods were selected. The finite element method (FEM), and JAR-23 standard were used to perform the numerical studies. In the analytical method, two degree freedom flutter and Lagrange's equations were employed to study the flutter phenomena analytically and estimate the flutter speed.

폐쇄형 이중세포로 된 박벽 복합재료 블레이드의 단순화 해석 모델 (A Simple Beam Model for Thin-Walled Composite Blades with Closed, Two-Cell Sections)

  • 정성남;박일주;이주영;이정진
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.187-190
    • /
    • 2005
  • A simple beam model based on a mixed method is proposed for the analysis of thin-walled composite blades with a two-cell airfoil section. A semi-complementary energy functional is used to obtain the beam force-displacement relations. The theory accounts for the effects of elastic couplings, shell wall thickness, warping, and warping restraint. All the kinematic relations as well as the cross-section stiffnesses are evaluated in a closed-form through the current beam formulation. The theory has been applied to two-cell composite blades with extension-torsion couplings and fairly good correlation has been observed in comparison with a detailed analysis and other literature.

  • PDF

부분 유입되는 터빈 블레이드의 과도 응답 특성에 대한 수치 해석 (Numerical Analysis on Transient Response of Turbine Blandes by Partial Admission)

  • 이진갑
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권3호
    • /
    • pp.396-404
    • /
    • 1998
  • A numerical analysis is presented for the transient behavior of a rotating turbines blades. The response due to partial admission during start-up and resonance pass is considered, Modal analysis and numerical integation method are used for solving the problems A theory for determining the material and aerodynamic damping values of turbine blades is presented. The damping values of the various modeling of blaes-uniform beam and tapered twisted beam-are calculated and the influence on blades response is investigated. The effect of angular velocity on transient response are also shown.

  • PDF

Seam Blade의 개발을 위한 성능시험평가 (Performance Test for the Development of Seam Blade)

  • 박홍광;노병준;이지근;조민호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.555-556
    • /
    • 2006
  • An experimental performance test has been carried out to improve a new blade with higher performance. Most of blades of the fan are designed to be a seamless and simple type, and the flow momentum can generally be evaluated to be comparatively low. Because some portions of the blowing winds can easily be passed through the seamless sharp edge of the blade, and several results studied on these problems have been reported: on the simple blade with edge-line seam, on the simple blade with guide seam. However the results do not show the remarkable increasement of performance of the blades. In this experimental performance test of the blades the design techniques of the blades with double seams (stem seam and edge seam) and comparison tests have been focused. As a first step the comparisons of velocity distributions and flow-rates depending upon the blade are presented in this paper.

  • PDF

Numerical Study of the blade dynamics for a cross-flow turbine

  • Sato Yuko;Kawamura Tetuya
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.230-231
    • /
    • 2003
  • Two and three-dimensional flows around a cross-flow wind turbine are investigated by the numerical simulation. The turbine studied in this paper has cylindrical shape with many small blades along its periphery. Incompressible Navier-Stokes equation is used for this simulation. A rotating coordinate system, which rotates at the same speed of the turbine, is used in order to simplify the boundary conditions on the blades of the turbine. Additionally, a boundary fitted coordinate system is employed in order to express the shape of the blades precisely. A third order upwind scheme is chosen for the approximation of the non-linear terms. When the number of blades is about 10, the highest torque is obtained.

  • PDF

A Simple Mixed-Based Approach for Thin-Walled Composite Blades with Two-Cell Sections

  • Jung Sung Nam;Park Il-Ju
    • Journal of Mechanical Science and Technology
    • /
    • 제19권11호
    • /
    • pp.2016-2024
    • /
    • 2005
  • In this work, a mixed beam approach that combines both the stiffness and the flexibility methods has been performed to analyze the coupled composite blades with closed, two-cell cross-sections. The Reissner's semi-complementary energy functional is used to derive the beam force-displacement relations. Only the membrane part of the shell wall is taken into account to make the analysis simple and also to deliver a clear picture of the mixed method. All the cross section stiffness coefficients as well as the distribution of shear across the section are evaluated in a closed-form through the beam formulation. The theory is validated against experimental test data, detailed finite element analysis results, and other analytical results for coupled composite blades with a two-cell airfoil section. Despite the simple kinematic model adopted in the theory, an accuracy comparable to that of two-dimensional finite element analysis has been obtained for cases considered in this study.

호버링 로터 성능해석을 위한 수치기법 연구 (NUMERICAL TECHNIQUES FOR HOVERING ROTOR PERFORMANCE ANALYSIS)

  • 김철완;박영민;장병희
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.151-154
    • /
    • 2006
  • In the present paper, hovering performance analyses of proprotor and helicopter rotor blades were performed by using FLUENT software. As a proprotor, TRAM(Tilt Rotor Aeroacoustic Model) was selected and performance analysis was carried out with mesh adaptation for more elaborate solution. As a helicopter rotor blades, two bladed Caradonna and Tung's rotor and four-bladed BO-105 helicopter rotor blades were selected. In case of Caradonna and Tung's rotor, vortex trajectory was compared with experimental data to inspect the vortex convection capability of the present flow solver. For the final case, performance of BO-105 helicopter rotor blades was investigated and compared with experimental data. After performance analyses of proprotor and helicopter rotors, it was shown that the present solver showed reasonable vortex strength, wake geometry and thurst coefficient distributions. But power coefficient was somewhat overestimated about $10%{\sim}15%$ regard less of mesh adaptation.

  • PDF