• 제목/요약/키워드: Blade-to-Blade Flow

검색결과 1,077건 처리시간 0.027초

Experimental and Computational Studies on Flow Behavior Around Counter Rotating Blades in a Double-Spindle Deck

  • Chon, Woo-Chong;Amano, Ryoichi S.
    • Journal of Mechanical Science and Technology
    • /
    • 제18권8호
    • /
    • pp.1401-1417
    • /
    • 2004
  • Experimental and computational studies were performed to determine the effects of different blade designs on a flow pattern inside a double-spindle counter rotating mower deck. In the experimental study, two different blade models were tested by measuring air velocities using a forward-scatter LDV system. The velocity measurements were taken at several different azimuth and axial sections inside the deck. The measured velocity distributions clarified the air flow pattern caused by the rotating blades and demonstrated the effects of deck and blade designs. A high-speed video camera and a sound level meter were used for flow visualization and noise level measurement. In the computational works, two-dimensional blade shapes at several arbitrary radial sections have been selected for flow computations around the blade model. For three-dimensional computation applied a non-inertia coordinate system, a flow field around the entire three-dimensional blade shape is used to evaluate flow patterns in order to take radial flow interactions into account. The computational results were compared with the experimental results.

터보기계 익렬을 위한 격자 형성 (Grid Generation for Turbomachinery Cascades)

  • 정희택;백제현
    • 연구논문집
    • /
    • 통권25호
    • /
    • pp.67-76
    • /
    • 1995
  • A grid generation algorithm associated with turbomachinery cascade flow fields has been developed. The present grid generation system consists of four separate modules. The system input is made of the results of the preliminary design, i.e., flow-path, aerodynamic conditions along the spanwise direction, and the blade profile data. The grid generation method generates a series of two-dimensional grids in the blade-to-blade passage to build up the three-¬dimensional grid, The numerical algorithm adopts the combination of the algebraic and elliptic method to create the internal grids efficiently and quickly. The resultant grids generated from each module of the system are used as the preprocessor for the performance prediction of the turbomachinery blade using Naveir-Stokes method in addition to the blade surface modelling for CAD data. For purposes of illustration, the grid generation system is applied to several complex geometries inculding a turbine rotor with and without a tip flow grid. Application to the blade design of the LP compressor was demonstrated to be very reliable and practical in support of design activities. This customized system are coupled strongly with the design procedure and reduces the man-hours required to predict the aerodynamic performance of the turbomachinery cascades using the CFD technique.

  • PDF

전향 스윕 축류형 팬에서의 팁 누설 유동 구조 (Structure of Tip Leakage Flow in a Forward-Swept Axial-Flow Fan)

  • 이공희;백제현
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.131-136
    • /
    • 2002
  • A computational analysis using Reynolds stress model in FLUENT is conducted to give a clear understanding of the effect of blade loading on the structure of tip leakage flow in a forward-swept axial-flow fan at design condition ($\phi$=0.25) and off-design condition ($\phi$=0.21 and 0.30). The roll-up of tip leakage flow starts near the minimum static wall pressure position, and the tip leakage vortex developes along the centerline of the pressure trough within the blade passages. Near tip region, a reverse flow induced by tip leakage vortex has a blockage effect on the through-flow. As a result, high momentum region is observed below the tip leakage vortex. As the blade loading increases, the reverse flow region is more inclined toward circumferential direction and the onset position of the rolling-up of tip leakage flow moves upstream. Because the casing boundary layer becomes thicker, and the mixing between the through-flow and the leakage jet with the different flow direction is enforced, the streamwise vorticity decays more fast with blade loading increasing. The computational results show that a distinct tip leakage vortex is observed downstream of the blade trailing edge at $\phi$=0.30, but it is not observed at $\phi$=0.21 and 0.25.

  • PDF

환기용 축류팬의 가이드핀 블레이드 형상변화에 따른 유동특성에 관한 연구 (Effects of a Guide Fin Blade on the Flow Characteristics in a Ventilating Axial Fan)

  • 박홍광;이지근;노병준
    • 설비공학논문집
    • /
    • 제19권12호
    • /
    • pp.874-882
    • /
    • 2007
  • The effects of a guide fin blade on the flow characteristics in a ventilating axial fan were investigated experimentally. The guide fins were setup onto the pressure surface of the blade, and their effects on the flowrate were evaluated. Two types of the guide fin blade were designed. One is the stem fin blade, and the other is the radial fin blade. The stem fin is designed normal to the circumference of a circle, and the radial fin is designed along the circumference of a circle. The results from the guide fin blade fans are compared with that of the blade without guide fins. The position and the geometry of the radial fin setting up on the blade have an effect on the increase of flowrate with the minor sacrifice of rotational speed of the blades. The radial fin positioning at 0.84 times blade diameter shows highest performance in the flowrate. The increase of the blade weight resulting from applying the guide fins shows minor effect on the variation of rotational speed of the blades.

A Study on an Axial-Type 2-D Turbine Blade Shape for Reducing the Blade Profile Loss

  • Cho, Soo-Yong;Yoon, Eui-Soo;Park, Bum-Seog
    • Journal of Mechanical Science and Technology
    • /
    • 제16권8호
    • /
    • pp.1154-1164
    • /
    • 2002
  • Losses on the turbine consist of the mechanical loss, tip clearance loss, secondary flow loss and blade profile loss etc.,. More than 60 % of total losses on the turbine is generated by the two latter loss mechanisms. These losses are directly related with the reduction of turbine efficiency. In order to provide a new design methodology for reducing losses and increasing turbine efficiency, a two-dimensional axial-type turbine blade shape is modified by the optimization process with two-dimensional compressible flow analysis codes, which are validated by the experimental results on the VKI turbine blade. A turbine blade profile is selected at the mean radius of turbine rotor using on a heavy duty gas turbine, and optimized at the operating condition. Shape parameters, which are employed to change the blade shape, are applied as design variables in the optimization process. Aerodynamic, mechanical and geometric constraints are imposed to ensure that the optimized profile meets all engineering restrict conditions. The objective function is the pitchwise area averaged total pressure at the 30% axial chord downstream from the trailing edge. 13 design variables are chosen for blade shape modification. A 10.8 % reduction of total pressure loss on the turbine rotor is achieved by this process, which is same as a more than 1% total-to-total efficiency increase. The computed results are compared with those using 11 design variables, and show that optimized results depend heavily on the accuracy of blade design.

초음속 회전익의 앞전 형상이 공력 성능에 미치는 효과에 대한 수치적 연구 (Numerical Study on The Effects of Blade Leading Edge Shape to the Performance of Supersonic Rotors)

  • 박기철
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.149-155
    • /
    • 2001
  • Recently, it is required to design higher stage pressure ratio compressor while maintaining equal adiabatic efficiency. To increase the stage pressure ratio, blade rotational speed or diffusion factor should be increased. In the case of increasing rotational speed, relative speed of flow at blade leading edge is well supersonic. In supersonic blade, total pressure loss is mainly due to shock wave and blade leading edge thickness should be very thin to minimize the shock wave loss. As a result, the blade is like to be week in terms of mechanical strength and the manufacturing cost is very high because NC machining is necessary. It is also one of big hurdle to overcome to make small compressor. In this paper, the effects of blade leading edge to the performance of supersonic blade In terms of total pressure loss. The efficiency of already known method to make thin blade leading edge from the casted blade with rather thick leading edge thickness is also assessed.

  • PDF

Predicting BVI Loadings and Wake Structure of the HARTII Rotor Using Adaptive Unstructured Meshes

  • Yu, Dong-Ok;Jung, Mun-Seung;Kwon, Oh-Joon;Yu, Yung-H.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제10권2호
    • /
    • pp.95-105
    • /
    • 2009
  • The flow fields around the HARTII rotor were numerically investigated using a viscous flow solver on adaptive unstructured meshes. An overset mesh and a deforming mesh technique were used to handle the blade motion including blade deflection, which was obtain from the HARTII experimental data. A solution-adaptive mesh refinement technique was also used to capture the rotor wake effectively. Comparison of the sectional normal force and pitching moment at 87% radial station between the two cases, with and without the blade deflection, showed that the blade loading is significantly affected by blade torsion. It was found that as the mesh was refined, the strength of tip vortex is better preserved, and the magnitude of high frequency blade loading, caused by blade-vortex interaction (BVI), is further magnified. It was also found that a proper time step size, which corresponds to the cell size, should be used to predict unsteady solutions accurately. In general, the numerical results in terms of the unsteady blade loading and the rotor wake show good agreement with the experimental data.

복합발전 적용을 위한 1kW급 수평축 풍력터빈 유동해석 (Flow Analysis on a 1kW-class Horizontal Axis Wind Turbine Blade for Hybrid Power Generation System)

  • 이준용;최낙준;최영도
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.60.2-60.2
    • /
    • 2011
  • This study is to develop a 1kW-class small wind turbine blade which will be applicable to relatively low speed regions. For this blade, a high efficiency wind turbine blade is designed and a light and low cost composite structure blade is adopted considering fatigue life. In this study, shape design of 1kW-class small wind turbine blade for hybrid power generation system is carried out by BEMT(blade element momentum theory). X-FOIL open software was used to acquire lift and drag coefficients of the 2D airfoils used in power prediction procedure. Moreover, pressure and velocity distributions are investigated according to TSR by CFD analysis.

  • PDF

스톨 근처에서 원심압축기 임펠러의 내부 유동현상에 관한 연구 (Analysis of Flow Phenomena in a Centrifugal Compressor Impeller Operating near Stall)

  • 음학진;강신형
    • 대한기계학회논문집B
    • /
    • 제28권3호
    • /
    • pp.330-337
    • /
    • 2004
  • Analysis of flow phenomena in a centrifugal compressor impeller has been carried out with numerical simulation to understand the physics of flow near stall. Near stall point, tip leakage flow spills ahead of the leading edge of adjacent blade and other leakage flow passes over the clearance of the adjacent blade instead of rolling up into vortex within the passage. The tip leakage flow at the mid chord of impeller blade impinges against the pressure surface of the adjacent blade and then rolls up into vortex within the passage, which blocks the flow passage and generates viscous loss. The spillage of leakage flow ahead of the adjacent blade generates the recirculation of flow entering the impeller, which causes the power transferred into the flow by the impeller to decrease and blocks the flow passage. Near diffuser hub wall, flow recirculation occurs. As operating point goes to stall point, the core of recirculation approaches the impeller exit The length rises to peak point and then drops with mass flow reduction, while the height steadily rises.

날개형상이 프로펠러형 수중믹서의 성능에 미치는 영향에 관한 수치적 연구 (A Numerical Study on the Effect of Blade Shapes on the Performance of the Propeller-type Submersible Mixers)

  • 최영석;이재환;김상일
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1999년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.252-256
    • /
    • 1999
  • In this research, the performance predictions of the submersible mixer were investigated. The variation of the performance characteristics by changing the impeller design parameters were discussed through the flow calculation results by using a commercial program, FLUENT. The performance of the submersible mixers is related to the velocity diffusion profiles downstream of the impeller and also the required input motor power to mix the fluid. In this study, the various design parameters such as the number of blade, the hub and tip diameters, the impeller blade profiles and revolution speed of the blades were taken for the fixed values. The blade sweep direction, the chord length distribution along with the radius of the blade and the inlet blade angle were changed to make different testing models. The flow calculation results show the effect of the changed design parameters on the performance of the submersible mixers and also give some helpful information for designing more efficient submersible mixers.

  • PDF