• Title/Summary/Keyword: Blade tip treatment

Search Result 11, Processing Time 0.021 seconds

Performance Enhancement of a Low Speed Axial Compressor Utilizing Simultaneous Tip Injection and Casing Treatment of Groove Type

  • Taghavi-Zenouz, Reza;Behbahani, Mohammad Hosein Ababaf
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.91-98
    • /
    • 2017
  • Performance of a low speed axial compressor is enhanced through a proper configuration of blade row tip injection and casing treatment of groove type. Air injectors were mounted evenly spaced upstream of the blade row within the casing groove and were all aligned parallel to the compressor axis. The groove, which covers all the blade tip chord length, extends all-round the casing circumference. Method of investigation is based on solution of the unsteady form of the Navier-Stokes equations utilizing $k-{\omega}$ SST turbulence model. Extensive parametric studies have been carried out to explore effects of injectors' flow momentums and yaw angles on compressor performance, while being run at different throttle valve setting. Emphasis has been focused on situations near to stall condition. Unsteady numerical analyses for untreated casing and no-injection case for near stall condition provided to discover two well-known criteria for spike stall inception, i.e., blade leading edge spillage and trailing edge back-flow. Final results showed that with only 6 injectors mounted axially in the casing groove and at yaw angle of 15 degrees opposite the direction of the blade row rotation, with a total mass flow rate of only 0.5% of the compressor main flow, surprisingly, the stall margin improves by 15.5%.

Tip Leakage Flow on the Transonic Compressor Rotor (천음속 회전익에서의 누설유동)

  • Park, JunYoung;Chung, HeeTaeg;Baek, JeHyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.244-249
    • /
    • 2002
  • It is known that tip clearance flows reduce the pressure rin, flow range and efficiency of the turbomachinery. So, the clear understanding about flow fields in the tip region is needed to efficiently design the turbomachinery. The Navier-Stokes code with the proper treatment of the boundary conditions has been developed to analyze the three-dimensional steady viscous flow fields in the transonic rotating blades and a numerical study has been conducted to investigate the detail flow physics in the tip region of transonic rotor, NASA Rotor 67. The computational results in the tip region of transonic rotors show the leakage vortices, leakage flow from pressure side to suction side and their interaction with a shock Depending on the operating conditions, the position of shock-wave on the blade surface are v8y different close to the blade tip of the transonic compressor rotor. The shock-wave position dose to the blade tip had the dose relationship with the starting position of leakage vortex and the direction of leakage flow.

  • PDF

Numerical Modeling of Tip Vortex Flow of Marine Propellers

  • Pyo, Sang-woo
    • Journal of Ship and Ocean Technology
    • /
    • v.1 no.2
    • /
    • pp.19-30
    • /
    • 1997
  • The accurate prediction of the flow and the pressure distribution near the tip of the blade is crucial in determining the tip vortex cavitation inception which usually occurs on the blade tip or inside the core of the tip vortex just downstream of the blade tip. An improved boundary element method is applied to the prediction of the flow around propeller blades, with emphasis at the tip region. In the method, the Blow adapted grid and a higher order panel method, which combines a hyperboloidal panel geometry with a hi-quadratic dipole distribution, are used in order to accurately model the trailing wake geometry and the highly rolled-up regions in the wake. The method is applied to several propeller geometries and the results have been found to agree well to the existing experimental data. Inviscid flow methods are able to predict the pressures at the tip as well as the shape of the trailing wake. On the other hand, they are unable to determine the flow inside the viscous core of the tip vortex, where cavitation inception often occurs. Thus, a method is presented that treats the flow inside the viscous core. The inner flow is treated with a 2-D Clavier-stokes solution without making any assumptions for axisymmetric flow and conicity of the flow along the tip trajectory. The method can thus allow the treatment of general propeller blade configurations. The velocity and pressure distributions inside the core are shown and compared to those from other numerical methods.

  • PDF

Properties Variation According to Heat Treatment for Gas Turbine Blade(Bucket) Material of GTD-111DS (GTD-111DS 가스터빈 블레이드 재질의 열처리에 따른 재질 특성변화)

  • Park Sang-Yeal;Yang Sung-Ho;Kim Moon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.349-355
    • /
    • 2006
  • The gas turbine components is used on high temperature conditions which under severely circumstance with start-up and stop several times. Therefore, it is used nickel-base superalloys like and GTD-111DS. Damaged buckets on the t긴ade tip during operating are repaired per 24,000 hr to three times according to repair specification of manufacture. It is applied pre-heat, HIP(hot isostatic pressing) and post-heat treatment to support welding repair on blade tip effectively. On this study, It is utilize of $WRAP^{TM}$ (welding repair advanced process) method to make tension test specimens for this study, And then, material strength and characteristic for GTD-111DS was analyzed.

Tip Leakage Flow on the Transonic Compressor Rotor (천음속 회전익에서의 누설유동)

  • Park, Jun-Young;Chung, Hee-Taeg;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.84-94
    • /
    • 2003
  • It is known that tip clearance flows reduce the pressure rise, flow range and efficiency of the turbomachinery. So, the clear understanding about flow fields in the tip region is needed to efficiently design the turbomachinery. The Navier-Stokes code with the proper treatment of the boundary conditions has been developed to analyze the three-dimensional steady viscous flow fields in the transonic rotating blades and a numerical study has been conducted to investigate the detail flow physics in the tip region of transonic rotor, NASA Rotor 67. The computational results in the tip region of transonic rotors show the leakage vortices, leakage flow from pressure side to suction side and their interaction with a shock. Depen ding on the operating conditions, toad distributions and the position of shock-wave on the blade surface are very different close to the blade tip of the transonic compressor rotor. The load distribution and the shock-wave position close to the blade tip had the close relationship with the starting position of leakage vortex and the direction of leakage flow.

Investigation on the Off Design Performance of a Transonic Compressor with Circumferential Grooves

  • Zhu, Jianhong;Piao, Ying;Zhou, Jianxing;Qi, Xingming
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.66-71
    • /
    • 2008
  • Two cases with circumferential grooves were designed for a transonic compressor, and 3-D numerical simulations were conducted for stall mechanism at three representative speeds. A conclusion can be drawn from the comparison between compressors with or without casing treatment that: with the rising of rotation speed, stall margin increases dramatically under the help of casing treatments, and the case with middle grooves has reasonable compromise between stall margin increment and efficiency cutting. At lower speed, the increment reduces, and grooves at the back of blade tip have more influence on stall margin. Further investigation shows there is a transition in mechanism of compressor stall with the decline of rotational speed: at high rotation speed, the expansion of stall margin mainly results from the suppression of tip leakage vortex by casing treatments, yet it benefits more from the depression of boundary layer separation from suction surface of blade tip.

  • PDF

Numerical Optimization of a Transonic Axial Compressor with Casing Grooves for Improvement of Operating Stability (케이싱 그루브가 장착된 천음속 축류압축기의 작동 안정성 향상을 위한 수치최적화)

  • Kim, Jin-Hyuk;Choi, Kwang-Jin;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.31-38
    • /
    • 2011
  • Optimization using a hybrid multi-objective evolutionary algorithm coupled with response surface approximation has been performed to improve the performance of a transonic axial compressor with circumferential casing grooves. In order to optimize the operating stability and peak adiabatic efficiency of the compressor with circumferential casing grooves, tip clearance, angle distribution at blade tip and the depth of the circumferential casing grooves are selected as design variables. Three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model are discretized by finite volume approximations. The trade-off between two objectives with the interaction of blade and casing treatment is determined and discussed with respect to the representative clusters in the Pareto-optimal solutions compared to the axial compressor without the casing treatment.

Numerical study on Wells turbine with penetrating blade tip treatments for wave energy conversion

  • Cui, Ying;Hyun, Beom-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.5
    • /
    • pp.456-465
    • /
    • 2016
  • In order to optimize the performance of a Wells turbine with fixed guide vanes, the designs of an end plate and a ring on the tip of the turbine rotor are proposed as penetrating blade tip treatments. In this study, numerical investigations are made using computational fluid dynamics (CFD)-based ANSYS Fluent software, and validated by corresponding experimental data. The flow fields are analyzed and non-dimensional coefficients $C_A$, $C_T$ and ${\eta}$ are calculated under steady-state conditions. Numerical results show that the stalling phenomenon on a ring-type Wells turbine occurs at a flow coefficient of ${\phi}=0.36$, and its peak efficiency can reach 0.54, which is 16% higher than that of an unmodified turbine and 9% higher than in the case of an endplate-type turbine. In addition, quasi-steady analysis is used to calculate the mean efficiency and output work of a wave cycle under sinusoidal flow conditions. As a result, it has been found that the ring-type turbine is superior to other types of Wells turbines.

A Study on the Performance of the Ring-type Impulse Turbine for Wave Energy Conversion (파력발전용 링타입 임펄스터어빈의 성능 해석)

  • HYUN BEOM-SOO;MOON JAE-SEUNG;HONG SEOK-WON;KIM KI-SUP
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.1 s.68
    • /
    • pp.20-25
    • /
    • 2006
  • This paper deals with the design and aerodynamic analysis of a so-called 'ring-type' impulse turbine for wave energy conversion. Numerical analysis was performed using the CFD cock, FLUENT. The main idea of the proposed turbine rotor was to minimize the adverse effect of tip clearance of the turbine blade; the design was borrowed from a ducted propeller with connected ring tip for special purpose marine vehicles. Results show that the efficiency increases up to $10\%$, depending on flaw coefficient, with the higher flaw coefficient yielding better efficiency. Decrease of input coefficient CA was the main reason for higher efficiency. Performance of ring-type rotor at various design parameters, as well as flaw conditions, was investigated, and the advantages and the disadvantages of the present impulse turbine were also discussed.

Experimental Research for Performance and Noise of Small Axial Fan

  • Ito, Takahiro;Minorikawa, Gaku;Fan, Qinyin
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.136-146
    • /
    • 2009
  • Small axial fans have become widely used as cooling devices in recent years. Because of their increasing importance, studies have been conducted on ways to improve the performance and reduce the noise of such fans. In this report, a small axial fan with a diameter of 85 mm (a type popularity used in personal computer or workstation) was selected for further examination. The influence on aerodynamic performance and noise of such frame design parameters as blade tip clearance results in a decrease of discrete frequency noise and an increase of broad-spectrum noise. As for the most suitable design refinement in terms of fan efficiency, we found that the treatment of outlet corner roundness and altering spoke skew to the direction counter to that of fan rotation was effective.