• 제목/요약/키워드: Blade loads

검색결과 172건 처리시간 0.029초

해상풍력(Offshore Wind Power) 기술동향 (Offshore Wind Power, Review)

  • 나도백;신효순;나덕주
    • 에너지공학
    • /
    • 제20권2호
    • /
    • pp.143-153
    • /
    • 2011
  • 해상풍력발전은 가장 유망한 재생 에너지의 하나이며, 육상풍력발전보다 풍력이 강력하고 일정해서 장시간 고출력 발생이 가능하고 소음, 공간적 한계, 경관훼손 등 기존 육상풍력발전의 단점을 보완하고 초대형으로 제작할 수 있다. 우리나라는 3면이 바다로 둘러싸여 해상풍력자원이 풍부하고 발전가능성이 크다. 이 고찰은 해상풍력발전기의 터빈과 하부구조물 기술동향, 국내외 시장동향, 학술 및 특허정보를 분석하였다.

풍력발전기 주축 및 날개 부하 측정시스템의 보정 및 불확실성 해석 (A Calibration and Uncertainty Analysis on the Load Monitoring System for a Low Speed Shaft and Rotor Blade of a Wind Turbine)

  • 박무열;유능수;남윤수
    • 대한기계학회논문집A
    • /
    • 제30권5호
    • /
    • pp.560-567
    • /
    • 2006
  • The exact load measurements for the mechanical parts of a wind turbine are important step both fur the evaluation of a specific wind turbine design and for a certification process. A common method for a mechanical load measurement is using a strain gauge sensing. Two main problems ought to be answered in order for this method to be applied to the wind turbine project. These are strain gauge calibration and non-contact signal transmission from the strain gauge output to a load monitoring system. This paper suggests reliable solutions fer these two problems. A Bluetooth, a short range wireless data communication technology, is used to solve the second problem. The first one, the strain gauge calibration methodology for a load measurement in a wind turbine application, is fully explained in this paper. Various mechanical loadings for a strain gauge calibration in a wind turbine load measurement are introduced and analyzed. Initial experimental results which are obtained from a 1 kW small size wind turbine are analyzed, and the uncertainty problem in estimating mechanical loads using a calibration matrix is fully covered in this paper.

리어가이더 형상변화에 따른 횡류홴 성능해석 (Analysis of Performance of Cross-Flow Fan with Various Rear Guiders)

  • 김동원;이준환;박성관;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2076-2082
    • /
    • 2003
  • A cross-flow fan is widely used on many industrial fields: mining industry, automobile and home appliances, etc. The design point of the cross-flow fan is generally based on the region within low static pressure and high flow rate. It relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice. However, it has low static pressure efficiency between 30% and 40% because of relative high impact loss. Recently, in the air-conditioning systems, the operating behaviors at the off-design points are highly regarded to broaden the application area for various air-cooling loads. Especially, at the lower flow rate, there exists a rapid pressure head reduction, a noise increase and an irregular flow field against a rearguider as a scroll of centrifugal fan. Numerical analyses are carried out for investigating the flow characteristics in a cross-flow fan including the impeller, the rearguider and the stabilizer. Especially, various types of rearguiders are estimated by numerical and experimental methods to insure the stable operation in the region of lower flow rate. Numerical domains are discretized by hexahedral cells. Three-dimensional, unsteady governing equations are solved using FVM, PISO algorithm, sliding grid system and standard ${\kappa}-{\varepsilon}$ turbulence model. ASHRAE standard fan tester is also used to estimate the performance of the modeled crossflow fan.

  • PDF

Analysis of aerodynamic characteristics of 2 MW horizontal axis large wind turbine

  • Ilhan, Akin;Bilgili, Mehmet;Sahin, Besir
    • Wind and Structures
    • /
    • 제27권3호
    • /
    • pp.187-197
    • /
    • 2018
  • In this study, aerodynamic characteristics of a horizontal axis wind turbine (HAWT) were evaluated and discussed in terms of measured data in existing onshore wind farm. Five wind turbines (T1, T2, T3, T4 and T5) were selected, and hub-height wind speed, $U_D$, wind turbine power output, P and turbine rotational speed, ${\Omega}$ data measured from these turbines were used for evaluation. In order to obtain characteristics of axial flow induction factor, a, power coefficient, $C_p$, thrust force coefficient, $C_T$, thrust force, T and tangential flow induction factor, a', Blade Element Momentum (BEM) theory was used. According to the results obtained, during a year, probability density of turbines at a rotational speed of 16.1 rpm was determined as approximately 45%. Optimum tip speed ratio was calculated to be 7.12 for most efficient wind turbine. Maximum $C_p$ was found to be 30% corresponding to this tip speed ratio.

수치해석을 통한 대형 선박용 프로펠러의 비공동소음 예측 (Prediction of Non-cavitation Noise from Large Scale Marine Propeller)

  • 유기완;이종열;김봉기;변정우
    • 한국소음진동공학회논문집
    • /
    • 제25권2호
    • /
    • pp.75-82
    • /
    • 2015
  • Noises from the large scale marine propeller are calculated numerically on non-cavitation condition. The hydrodynamic analysis is carried out by potential based panel method with time marching free wake approach. The distribution of hydrodynamic loads on the propeller surface and noise signals are obtained using the unsteady Bernoulli's equation and the Farasssat's formula respectively. It turns out that the noise signal at the narrow band shows strong peak at the blade passage frequency, and the peak value at the 1/3 octave band also shows the same trend. Noise signals and directivity patterns for both the thickness and the loading noise are compared with each other. The directivity pattern for the loading noise shows minor lobe at the backward side of the rotating disc plane.

소형풍력발전기의 설계하중 평가 연구 (An Assessment Study for Design Load of a Small Wind Turbine)

  • 현승건;김건훈;허종철
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.48-53
    • /
    • 2011
  • In this study, it is to verify the applicability for a simplified model(IEC61400-2, Design Require-ments for Small Wind Turbines, 2006-03) is the international standard is used to the structural design. In the design process of a wind turbine, the safety of a designed wind turbine is one of the most important factors. The simplified model can be used to determine the design load for small wind turbines. So, this paper has been re-evaluated a small wind turbine design loads that produced already. As a result, the material characteristic value(Rchar) of Blade, Rotor shaft and the tower are $90E6[N/m^2]$, $441E6[N/m^2]$ and $94E6[N/m^2]$. Therefore, the value of the applied safety factor to each part of the survival probability of 95% are satisfied.

  • PDF

A low cost miniature PZT amplifier for wireless active structural health monitoring

  • Olmi, Claudio;Song, Gangbing;Shieh, Leang-San;Mo, Yi-Lung
    • Smart Structures and Systems
    • /
    • 제7권5호
    • /
    • pp.365-378
    • /
    • 2011
  • Piezo-based active structural health monitoring (SHM) requires amplifiers specifically designed for capacitive loads. Moreover, with the increase in number of applications of wireless SHM systems, energy efficiency and cost reduction for this type of amplifiers is becoming a requirement. General lab grade amplifiers are big and costly, and not built for outdoor environments. Although some piezoceramic power amplifiers are available in the market, none of them are specifically targeting the wireless constraints and low power requirements. In this paper, a piezoceramic transducer amplifier for wireless active SHM systems has been designed. Power requirements are met by two digital On/Off switches that set the amplifier in a standby state when not in use. It provides a stable ${\pm}180$ Volts output with a bandwidth of 7k Hz using a single 12 V battery. Additionally, both voltage and current outputs are provided for feedback control, impedance check, or actuator damage verification. Vibration control tests of an aluminum beam were conducted in the University of Houston lab, while wireless active SHM tests of a wind turbine blade were performed in the Harbin Institute of Technology wind tunnel. The results showed that the developed amplifier provided equivalent results to commercial solutions in suppressing structural vibrations, and that it allows researchers to perform active wireless SHM on moving objects with no power wires from the grid.

건답에서 쟁기작업의 부하특성 및 안전도 분석 (Load and Safety Analysis for Plow Operation in Dry Fields)

  • 이주연;남주석
    • 한국기계가공학회지
    • /
    • 제18권6호
    • /
    • pp.9-18
    • /
    • 2019
  • This study derives load characteristics and analyzes the safety of plowshares operating in dry fields. We mounted a three-blade, reversible plow on a 23.7 kW tractor and measured the plow's tractive force as well as the torque from the engine output shaft on the rear axle under various working speeds (L4, M1, M2, M3). We chose a Korean test site of Seomyeon, Chuncheon with sandy soil texture, as determined using the USDA method. We constructed the load spectrum for torque and tractive force using measured data and derived the fatigue life of the plowshare from a stress-cycle (S-N) curve of the plow material. Our results show that the M3 gear maximizes the driving shaft torque loads and, applying the tractive force load spectrum, creates a cumulative damage sum of $4.14{\times}10^{-5}$. Considering sampling time, we estimate a fatigue life of 805 hours while using the M3 gear. When using the other working speeds, however, all of the stress levels fell within the endurance limits and, therefore, our model predicts infinite plowshare lifetimes. For this analysis, we used a yield strength of 1,079 MPa for the plowshare and static safety factors, analyzed using the maximum stress, between 6.83 and 8.63 under each working speed.

Application of differential transformation method for free vibration analysis of wind turbine

  • Bozdogan, Kanat Burak;Maleki, Farshid Khosravi
    • Wind and Structures
    • /
    • 제32권1호
    • /
    • pp.11-17
    • /
    • 2021
  • In recent years, there has been a tendency towards renewable energy sources considering the damages caused by non-renewable energy resources to nature and humans. One of the renewable energy sources is wind and energy is obtained with the help of wind turbines. To determine the behavior of wind turbines under earthquake loads, dynamic characteristics are required. In this study, the differential transformation method is proposed to determine the free vibration analysis of wind turbines with a variable cross-section. The wind turbine is modeled as an equivalent variable continuous flexural beam and blade weight is considered as a point mass at the top of the structures. The differential equation representing the free vibration of the wind turbine is transformed into an algebraic equation with the help of differential transformation method and the angular frequencies and the mode shapes of the wind turbine are obtained by the help of the differential transformation method. In the study, a sample taken from the literature was solved with the presented method and the suitability of the method was investigated. The same wind turbine example also modeled by finite element modelling software, ABAQUS. Results of the finite element model and differential transformation method are compared with each other and the results are in good agreement.

풍력발전기용 Yaw gearbox의 가속 수명시험에 관한 연구 (A Study on the Accelerated Life Test of Yaw Gearbox for Wind Turbine)

  • 이용범;이기천;이종직;임신열
    • 드라이브 ㆍ 컨트롤
    • /
    • 제21권1호
    • /
    • pp.16-21
    • /
    • 2024
  • The yaw gearbox is a key device in a wind power generator that improves power generation efficiency by rotating hundreds of tons (400 to 600 tons) of nacelle so that the blade reaches 90 degrees in the wind direction. Recently, installation sites have been advancing from land to sea as they have become super-large at (8-12) MW to increase the economic feasibility of wind power generators and utilize excellent wind resources, and the target life of large wind power generators is 25 to 30 years. The yaw gearbox of 6 to 12 sets is installed in a very complex place inside the nacelle on the tower with parallels, and it is important to secure the reliability of the yaw gearbox because if a failure occurs after installation, it costs tens to hundreds of times the price of a new product to restore. In this study, equivalent loads were calculated by analyzing failure mode and field data, accelerated life test conditions were established, and a test device was constructed to perform the accelerated life tests and performance tests to ensure the reliability of the gearbox.