• Title/Summary/Keyword: Blade leading edge

Search Result 119, Processing Time 0.023 seconds

Analysis of Degradation Mechanism for Single Crystal Blade and Vane in Gas Turbine (가스터빈 단결정 블레이드 및 베인의 손상거동 분석)

  • Song, Kyu-So;Kim, Doo-Soo;Lee, Han-Sang;Yoo, Keun-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.549-554
    • /
    • 2011
  • Recently, technical advances have been made in high efficiency gas turbine power plants. In domestic gas turbine facilities, the material properties of the blade and vane are degraded by the daily start-stop operations arising from the thermo mechanical cycle. We surveyed the time dependent degradation of the HP blade and vane to gather basic data for life assessment and damage analysis. The EOH(equivalent operating hours) of the blades were 23,686, 27,909, and 52,859 and the EOH of the vanes were 28,714 and 52,859, respectively. With increased operating hours, the shape of the primary ${\gamma}$' precipitate transformed from cubic to spherical, and its average size also increased. The leading edge area of the blades and the center of the vanes had the worst morphology, and this tendency agrees with the microhardness results. The thickness of the thermally grown oxide at the outer surface of the bond coat increased with increased operating hours.

Unsteady Flow Characteristics of an Axial Flow Fan Installed in the Outdoor Unit of Air Conditioner (에어콘 실외기용 축류송풍기의 비정상 유동장 특성 연구)

  • Jang, Choon-Man
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.223-230
    • /
    • 2005
  • The unsteady nature of vortex structures has been investigated by a large eddy simulation (LES) in an axial flow fan with a shroud covering only the rear region of its rotor tip. The simulation shows that the tip vortex plays a major role in the structure and unsteady behavior of the vortical flow in the fan. The movements of the vortex structures induce high-pressure fluctuations on the rotor blade and in the blade passage. Frequency characteristics of the fluctuating pressure on the rotor blade are analyzed using wavelet transform. The dominant frequency of the real-time pressure selected at the high pressure fluctuation region corresponds well to that of the fluctuating rotor torque and the experimental result of fan noise. It is mainly generated due to the unsteady behavior of the vortical flow, such as the tip vortex and the leading edge separation vortex.

  • PDF

Effect of Tip Clearance Height on Heat Transfer Characteristics on the Plane Tip Surface of a High-Turning Turbine Rotor Blade (팁간극이 고선회각 터빈 동익 평면팁 표면에서의 열전달에 미치는 영향)

  • Moon, Hyun-Suk;Lee, Sang-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.173-177
    • /
    • 2005
  • The heat/mass transfer characteristics on the plane tip surface of a high-turning first-stage turbine rotor blade has been investigated by employing the naphthalene sublimation technique. The heat/mass transfer coefficient is measured for four tip clearance height-to-chord ratios of h/c = 1.0%, 2.0%, 3.0%, and 4% at the Reynolds number of $2.09{\times}105$. The result shows that at lower h/c, there exists a strong flow separation/re-attachment process, which results in severe thermal load along the pressure-side comer. As h/c increases, the re-attachment is occurred further downstream of the pressure-side comer with lower thermal load. At higher h/c, a pair of vortices on the tip surface near the leading edge are found along the pressure-side and suction-side comers, and the pressure-side tip vortex have significant influence even on the mid-chord local heat transfer.

  • PDF

Study on the Surface Coating of CrN for Erosion in Liquid water Drop Test

  • Kwon, Sik-Chol;Baek, W-S;Lee, S-H;Kim, K-H;Kim, H-H
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.63-63
    • /
    • 2001
  • As a new approach to substitute for a hard alloy of stellite 6B containing Co which is radioactive in nuclear system, a hard-phase coating of CrN will be applicable to protect 12Cr steel from erosion at leading edge on steam turbine blade. The CrN coating was prepared by arc ion plating on 12 Cr steel and was undertaken in liquid impact test at the velocity of 35Om/sec, which simulate the environment in the last stage of blade. The erosion resistance of coating was evaluated by optical observation on damaged surface. The threshold number of impact was closely related with surface hardness. And thus, it was confirmed that surface hardening improves the life time of steam turbine blade.

  • PDF

A Propeller Design Method with a New Blade Section : Applied to Container Ships (새로운 날개단면을 이용한 프로펠러 설계법 - 콘테이너선에 응용 -)

  • J.T. Lee;M.C. Kim;J.W. Ahn;S.H. Van;H.C. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.40-51
    • /
    • 1991
  • A Propeller design method using the newly developed blade section(KH18), which behaves better cavitation characteristics, is presented. Experimental results for two-dimensional foil sections show that the lift-drag curve and the cavitation-free bucket diagram of the new blade section are wider comparing to those of the existion NACA sections. This characteristic of the new section is particularly important for marine propeller applications since angle of attack variation of the propeller blade operating behind a non-uniform ship's wake is relatively large. A lifting surface theory is used for the design of a propeller with the developed section for a 2700 TEU container ship. Since the most suitable chordwise loading shape is not known a priori, chordwise loading shape is chosen as a design parameter. Five propellers with different chordwise loading shapes and different foil sections are designed and tested in the towing tank and cavitation tunnel at KRISO. It is observed by a series of extensive model tsets that the propeller(KP197) having the chordwise loading shape, which has less leading edge loading at the inner radii and more leading edge loading at the outer radii of 0.7 radius, has higher propulsive efficiency and better cavitation characteristics. The KP197 propeller shows 1% higher efficiency, 30% cavitation volume reduction and 9% reduction of fluctuating pressure level comparing to the propeller with an NACA section. More appreciable efficiency gain for the new blade section propeller would be expected by reduction of expanded blade area considering the better cavitation characteristics of the new blade section.

  • PDF

Analysis of Flow Phenomena in a Centrifugal Compressor Impeller Operating near Stall (스톨 근처에서 원심압축기 임펠러의 내부 유동현상에 관한 연구)

  • Eum, Hark-Jin;Kang, Shin-Hyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.330-337
    • /
    • 2004
  • Analysis of flow phenomena in a centrifugal compressor impeller has been carried out with numerical simulation to understand the physics of flow near stall. Near stall point, tip leakage flow spills ahead of the leading edge of adjacent blade and other leakage flow passes over the clearance of the adjacent blade instead of rolling up into vortex within the passage. The tip leakage flow at the mid chord of impeller blade impinges against the pressure surface of the adjacent blade and then rolls up into vortex within the passage, which blocks the flow passage and generates viscous loss. The spillage of leakage flow ahead of the adjacent blade generates the recirculation of flow entering the impeller, which causes the power transferred into the flow by the impeller to decrease and blocks the flow passage. Near diffuser hub wall, flow recirculation occurs. As operating point goes to stall point, the core of recirculation approaches the impeller exit The length rises to peak point and then drops with mass flow reduction, while the height steadily rises.

A Study of Performance Estimate and Flow Analysis of the 500 kW Horizontal-Axis Wind Turbine by CFD (CFD에 의한 500kW급 수평축 풍력발전용 터빈의 성능평가 및 유동해석에 관한 연구)

  • Kim, Y.T.;Kim, B.S.;Kim, J.H.;Nam, C.D.;Lee, Y.H.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.4 s.17
    • /
    • pp.32-39
    • /
    • 2002
  • The purpose of this 3-D numerical simulation is to calculate and examine the complex 3-D stall phenomena on the rotor blade and wake distribution of the wind turbine. The flow characteristics of 500kW Horizontal Axis Wind Turbine (HAWT) are compared with the calculated 3-D stall phenomena and wake distribution. We used the CFX-TASCflow to predict flow and power characteristics of the wind turbine. The CFD results are somewhat consistent with the BEM (Blade Element Momentum) results. And, the rotational speed becomes faster, the 3-D stall region becomes smaller. Moreover, the pressure distribution on the pressure side that directly gets the incoming wind grows high as it goes toward the tip of the blade. The pressure distribution on the blade's suction side tells us that the pressure becomes low in the leading edge of the airfoil as it moves from the hub to the tip. However, we are not able to precisely predict on the power coefficient of the rotor blade at the position of generating complex 3-D stall region.

Flow Instability Assessment Occurring in Low Flow Rate Region According to the Change of a Centrifugal Compressor Impeller Shape (원심압축기 임펠러의 형상 변화에 따른 저유량 영역에서 발생하는 불안정 유동 평가)

  • Jo, Seong Hwi;Kim, Hong Jip;Lee, Myong Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.2
    • /
    • pp.21-26
    • /
    • 2016
  • The objective of present study is to assess the performance of the first stage compressor in a total 3-stage 5000 HP-level turbo compressor. CFD commercial code, CFX has been used to predict three-dimensional flow characteristics inside of the impeller. Shear Stress Transport (SST) model has been used to simulate turbulent flows through Reynolds-averaged Navier-Stokes (RANS) equations. Grid dependency has been also checked to get optimal grid distribution. Numerical results have been compared with the experimental test results to elucidate performance characteristics of the present compressor. In addition, flow characteristics of the impeller only have been studied for various blade configurations. Angular offset in leading edge of the blade has been selected for the optimal blade design. Performance characteristics in region of low mass flow rate and high pressure ratio between the impeller entrance and exit have been investigated for the selection of optimal blade design. Also, flow instability such as stall phenomena has been studied and anti-stall characteristics have been checked for various blade configurations in the operational window.

Measurements of Temperature Field and Film-Cooling Effectiveness for a Shower-Head Film Cooling (샤워헤드 막냉각면에서의 온도장 및 막냉각효율 측정)

  • Jeong, Chul-Hee;Lee, Sang-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.177-187
    • /
    • 2000
  • Measurements of temperature fields and film-cooling effectiveness have been conducted for a shower-head film cooling on the leading edge of a blunt body, which simulates a first-stage turbine stator. In this study, three injection cases are employed for an average blowing ratio based on freestream velocity, M, of 0.5, 1.0 and 1.5. Two (Case 1), four (Case 2) and six (Case 3) rows of normal holes are symmetrically drilled on the three tested circular-cylinder leading edges. The measurements show that regardless of M, the film-cooling effectiveness increases as the injection row is situated at farther downstream location. In Case 1, the film-cooling effectiveness is highest for M = 0.5 and lowest for M = 1.5. On the contrary, in Case 3, the film-cooling effectiveness is highest for M = 1.0 and lowest for M = 0.5. When M = 0.5, the film coverage by the first row of the injection holes deteriorates as the number of the injection row increases. In particular, the film-cooling effectiveness due to the injection through the first row of the holes in Case 3, has a nearly zero value.

Development of New Cavitation Erosion Test Method for Analyzing the Durability of Erosion Resistance Paint (내침식페인트 성능 판별에 적합한 새로운 캐비테이션 침식시험기법 개발)

  • Paik, Bu-Geun;Kim, Kyung-Youl;Kim, Ki-Sup;Kim, Tae-Gyu;Kim, Kyung-Rae;Jang, Young-Hun;Lee, Sang-Uk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.132-140
    • /
    • 2010
  • The very erosive cavitation is simulated by an inclined propeller dynamometer in the medium-size cavitation tunnel of MOERI. The inclined shaft for propeller makes strong cavitaion, which occurs around the root of a propeller blade. The cavitation begins at the leading edge of the propeller and contracted toward the trailing edge through the reentrant jet action. The cavity focused on the region near the trailing edge collapsed over the blade surface. As the impact pressure by the cavitation collapsing is too strong, it can damage the blade surface in the form of pit. This cavitation impacts created by the collapsing process are similar to the full-scale ones and are different from those by other erosion test methods. The newly developed cavitation erosion test method can be applied to evaluate the materials such as metals, ceramics and coatings in terms of cavitation resistance.