• Title/Summary/Keyword: Blade Pitch Control

Search Result 83, Processing Time 0.021 seconds

Dynamic Models of Blade Pitch Control System Driven by Electro-Mechanical Actuator (전기-기계식 구동기를 이용한 블레이드 피치 조종 시스템의 동역학 모델)

  • Jin, Jaehyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.2
    • /
    • pp.111-118
    • /
    • 2022
  • An electro-mechanical actuator (EMA) is an actuator that combines an electric motor with a mechanical power transmission elements, and it is suitable for urban air mobility (UAM) in terms of design freedom and maintenance. In this paper, the author presents the research results of the EMA that controls the rotor blade pitch angle of UAM. The actuator is based on an inverted roller screw and controls the blade pitch angle through a two-bar linkage. The dynamic equations for the actuator alone and the blade pitching motion with actuator were derived. For the latter, the equivalent moment of inertia is variable depending on the link angle due to the two-bar linkage. The variations of the equivalent moments of inertia are analyzed and compared in terms of the nut motion and the blade pitch motion. For an example model, the variation of the equivalent moment of inertia of the former is smaller than the latter, so it is judged that the dynamic equations derived from the point of view of the nut motion is suitable for the controller design.

Optimal Aerodynamic Design and Performance Analysis for Pitch-Controlled HAWT (가변 피치형 수평축 풍력 터빈의 공력 최적설계 및 피치제어 성능 연구)

  • Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.891-898
    • /
    • 2007
  • Optimal aerodynamic design for the pitch-controlled horizontal axis wind turbine and its aerodynamic performance for various pitch angles are performed numerically by using the blade element momentum theory. The numerical calculation includes effects such as Prandtl‘s tip loss, airfoil distribution, and wake rotation. Six different airfoils are distributed along the blade span, and the special airfoil i.e. airfoil of 40% thickness ratio is adopted at the hub side to have structural integrity. The nonlinear chord obtained from the optimal design procedure is linearized to decrease the weight and to increase the productivity with very little change of the aerodynamic performance. From the comparisons of the power, thrust, and torque coefficients with corresponding values of different pitch angles, the aerodynamic performance shows delicate changes for just $3^{\circ}$ increase or decrease of the pitch angle. For precisive pitch control, it requires the pitch control algorithm and its drive mechanism below $3^{\circ}$ increment of pitch angle. The maximum torque is generated when the speed ratio is smaller than the designed one.

Dynamic Stability Analysis of Wind Turbines Considering Periodic Blade Pitch Actions (블레이드의 주기적 피치운동을 고려한 풍력 터빈의 동적 안정성 해석)

  • Kim, Kyungtaek;Lee, Chongwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.186-186
    • /
    • 2010
  • 개별 블레이드 피치 제어(individual blade pitch control)는 각각의 로터 블레이드의 피치각을 독립적으로 조정함으로써 블레이드에 작용하는 공력을 변화시키는 원리로 풍력 터빈 구조물에 발생하는 동적 피로하중을 저감시키기 위한 제어기법이다. 그러나 개별 피치 제어에 의해 발생하는 각 블레이드의 독립적인 피치 운동은 풍력 터빈 회전자에 비대칭성을 야기하고 구조물의 동적 불안정 현상을 발생시킬 수 있기 때문에 이에 대한 정확한 동적 해석이 선행되어야 한다. 하지만 블레이드의 피치 운동이 반영된 풍력 터빈은 시변계로 간주되어 기존의 시불변계 해석기법을 직접 적용할 수 없기 때문에 동적 해석에 어려움이 있다. 이 논문에서는 각각의 블레이드 피치운동을 주기함수로 근사화 함으로써 풍력 터빈을 주기 시변계로 모형화한다. 그리고 효율적으로 주기 시변계의 근사해를 구하기 위한 변조 좌표 변환(modulated coordinate transformation)기법을 적용하여 블레이드의 피치운동이 반영된 풍력 터빈의 동적 안정성 해석을 수행하였다. 그리고 현재 풍력 터빈의 동적 해석에 활용되는 대표적인 해석 기법인 다중 블레이드 좌표변환(multi-blade coordinate transformation)기법을 이용한 해석보다 정확한 결과를 얻을 수 있음을 보였다.

  • PDF

Power Control of a Pitch-controlled Wind Power System (피치제어형 풍력발전시스템의 출력제어)

  • 임종환;허종철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.84-91
    • /
    • 2003
  • The paper presents a power control algorithm for a full pitch-controlled wind power system. The design of a pitch controller, in general, is performed by linearizing the torque in the vicinity of a operating point assuming the tip speed ratio is constant. For power control, however, the tip speed ratio is no longer a constant. In this study, a reference pitch model is derived in terms of a wind speed, angular velocity, and pitch angle. The reference pitch model is used to design a controller without linearizing the non-linear torque model of the blade. The validity of the algorithm is demonstrated with the results produced through sets of simulation.

Development of an Intelligent Active Trailing-edge Flap Rotor to Reduce Vibratory Loads in Helicopter (헬리콥터의 진동하중 저감을 위한 지능형 능동 뒷전 플랩 로터 제어 시스템 개발)

  • Lee, Jae-Hwan;Choe, Jae-Hyeok;Shin, Sang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.492-497
    • /
    • 2011
  • Helicopter uses a rotor system to generate lift, thrust and forces, and its aerodynamic environment is generally complex. Unsteady aerodynamic environment arises such as blade vortex interaction. This unsteady aerodynamic environment induces vibratory aerodynamic loads and high aeroacoustic noise. Those are at N times the rotor blade revolutions (N/rev). But conventional rotor control system composed of pitch links and swash plate is not capable of adjusting such vibratory loads because its control is restricted to 1/rev. Many active control methodologies have been examined to alleviate the problem. The blade using active control device manipulates the blade pitch angle at arbitrary frequencies. In this paper, Active Trailing-edge Flap blade, which is one of the active control methods, is designed to modify the unsteady aerodynamic loads. Active Trailing-edge Flap blade uses a trailing edge flap manipulated by an actuator to change camber of the airfoil. Piezoelectric actuators are installed inside the blade to manipulate the trailing edge flap.

  • PDF

Simulation for Pitch Angle Control Strategies of a Grid-Connected Wind Turbine System on MATLAB/Simulink

  • Ro, Kyoung-Soo;Choi, Joon-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.91-97
    • /
    • 2007
  • This paper presents a pitch angle controller of a grid-connected wind turbine system for extracting maximum power from wind and implements a modeling and simulation of the wind turbine system on MATLAB/Simulink. It discusses the maximum power control algorithm for the wind turbine and presents, in a graphical form, the relationship of wind turbine output, rotor speed, and power coefficient with wind speed when the wind turbine is operated under the maximum power control algorithm. The objective of pitch angle control is to extract maximum power from wind and is achieved by regulating the blade pitch angle during above-rated wind speeds in order to bypass excessive energy in the wind. Case studies demonstrate that the pitch angle control is carried out to achieve maximum power extraction during above-rated wind speeds and effectiveness of the proposed controller would be satisfactory.

Characteristics of Noise Emission from Wind Turbine Generator According to Methods of Power Regulation (파워 조절 방법에 따른 풍력 터번 발전기의 방사 소음 특성)

  • Jung, Sung-Soo;Cheung, Wan-Sup;Shin, Su-Hyun;Chun, Se-Jong;Choi, Yong-Moon;Cheong, Cheol-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.941-945
    • /
    • 2006
  • In the development of electricity generating wind turbines for wind farm application, only two types have survived as the methods of power regulation; stall regulation and fun span pitch control. The sound measurement procedures of IEC 61400-11 are applied to field test and evaluation of noise emission from each of 1.5 MW and 660 kW wind turbine generators (WTG) utilizing the stall regulation and the pitch control for the power regulation, respectively. Apparent sound power level, wind speed dependence and third-octave band levels are evaluated for both of WTGs. It is found that while 1.5 MW WTG using the stall control is found to emit lower sound power than 660 kW one using the pitch control at low wind speed (below 8 m/s), sound power from the former becomes greater than that of the latter in the higher wind speed. Equivalent continuous sound pressure levels (ECSPL) of the stall control type of WTG vary more widely with wind speed than those of the pitch control type of WTG These characteristics are believed to be strongly dependent on the basic difference of the airflow around the blade between the stall regulation and the pitch control types of WTG. These characteristics according to the methods of power regulation lead to the very different noise emission characteristics of WTG depending on the seasons because the average wind speed in summer is lower than the critical velocity over which the airflow on the suction side of blade in the stall types of WT are separated. These results propose that, in view of environmental noise regulation, the developer of wind farm should give enough considerations to the choice of power regulation of their WTG based on the weather conditions of potential wind farm locations.

  • PDF

Aerodynamic and Structural Design on Small Wind Turbine Blade Using High Performance Configuration and E-Glass/Epoxy-Urethane Foam Sandwich Composite Structure

  • Kong, Changduk;Bang, Johyuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.401-407
    • /
    • 2004
  • This study proposes a interim development result for the l-㎾ class small wind turbine system, which is applicable to relatively low wind speed regions like Korea and has the variable pitch control mechanism. In the aerodynamic design of the wind turbine blade, parametric studies were carried out to determine an optimum aerodynamic configuration which is not only more efficient at low wind speed but whose diameter is not much larger than similar class other blades. A light composite structure, which can endure effectively various loads, was newly designed. In order to evaluate the structural design of the composite blade, the structural analysis was performed by the finite element method. Moreover both structural safety and stability were verified through the full-scale structural test.

  • PDF

Nonlinear Pitch and Torque Controller Design for Wind Turbine Generator Using Lyapunov Function (리아프노프 함수를 이용한 풍력 발전기 비선형 피치 및 토크 제어기 설계)

  • Kim, Guk-Sun;No, Tae-Soo;Jeon, Gyeong-Eon;Kim, Ji-Yon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1147-1154
    • /
    • 2012
  • In this study, a method for designing blade pitch and generator torque controllers for a wind turbine generator is presented. This method consists of two steps. First, the Lyapunov stability theory is used to obtain nonlinear control laws that can regulate the rotor speed and the power output at all operating ranges. The blade pitch controller is chosen such that it always decreases a positive definite function that represents the error in rotor speed control. Similarly, the generator torque controller always decreases a positive definite function that reflects the error in power output control. Then, the simulation-based optimization technique is used to tune the design parameters. The controller design procedure and simulation results are presented using the widely adopted two-mass model of the wind turbine.

An Investigation on Step Responses of Pitch PI Controller for a 2MW Wind Turbine Using Bladed S/W (Bladed S/W를 이용한 2MW급 풍력터빈에 대한 피치 PI 제어기의 계단응답 고찰)

  • Lim, Chae Wook
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.1
    • /
    • pp.59-64
    • /
    • 2015
  • The pitch control system in wind turbines becomes more and more important as the wind turbines are larger in multi-MW size. PI controller has been applied in most pitch controllers and it has been known that gain-scheduling is essential for pitch control of wind turbines. A demo model of 2 MW wind turbine which represents the whole dynamics of wind turbine including dynamic behaviors of blade, tower and rotational shaft is given in the commercial Bladed S/W for real wind turbines. In this paper, some results on step responses of the pitch PI controller and effectiveness of gain-scheduled pitch PI controller are presented through the Bladed S/W for the 2 MW wind turbine.