• Title/Summary/Keyword: Blade Parameters

Search Result 301, Processing Time 0.021 seconds

Optimum Design of a Cross Flow Fan (횡류팬의 최적설계방안)

  • Kim Dong-Hoon;Park Hyung-Koo
    • Journal of computational fluids engineering
    • /
    • v.8 no.4
    • /
    • pp.50-57
    • /
    • 2003
  • Cross-flow fans are widely used in various applications, due to their large capacity of mass flow and size compactness. The flow field of the cross-flow fan is, however, complex and has many design parameters. Thus, the general design guide has not been sufficiently established yet and the design strategies of cross-flow fans have been mostly based on experiments. In the present study, the performance and their two-dimensional flow characteristics are numerically analyzed by using the STAR-CD(commercial computational fluid dynamics code). The simulation is done by varying the several design parameters such as the impeller blade shapes and the gap between the stabilizer and impeller. The computational results are compared with the experimental data at the fan outlet region. Finally, some helpful guides for the optimum design of cross-flow fans are proposed.

Optimum Design of a Cross Flow Fan

  • Kim Dong-Hoon;Park Hyung-Koo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.260-262
    • /
    • 2003
  • Cross-flow fans are widely used in various applications, due to their large capacity of mass flow and size compactness. The flow field of the cross-flow fan is, however, complex and has many design parameters. Thus, the general design guide has not been sufficiently established yet and the design strategies of cross-flow fans have been based on experiments. In the present study, the performance and their two-dimensional flow characteristics are numerically analyzed by using the STAR-CD(commercial computational fluid dynamics code). The simulation is done by varying the several design parameters such as the impeller blade shapes and the gap between the stabilizer and impeller. The computational results are compared with the experimental data at the fan outlet region. Finally some helpful guides for the optimum design of cross-flow fans are proposed.

  • PDF

A Study on Characteristics of Design Parameters for In-line Duct Fan (관류형팬의 설계변수 특성에 관한 연구)

  • Park, J.W.;Huh, J.C.;Lee, C.H.;Park, W.S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.373-377
    • /
    • 2005
  • The Performance of in-line duct fan depends on the design parameters of impeller and guide vane. such as sweep back angle of impeller, the number of blades, outlet blade angle, guide vane angle etc. In this experimental study total four kinds of impellers having different sweep back angles, $90^{\circ},\;72.5^{\circ},\;55^{\circ},\;37.5^{\circ}$ with 8 guide vanes, different the number of blades, 6ea, 8ea, 10ea, 12ea, different kinds of outlet blade angles, $30^{\circ},\;45^{\circ}.\;60^{\circ}$ and different kinds of guide vane angles, $15^{\circ},\;30^{\circ},\;45^{\circ}$ were selected and their performance measured to investigate the effects of them. The results were non-dimensionalized to compare their performance.

  • PDF

A Study of One-Stage 3-Dimensional Axial Turbine Performance Test (단단 3차원 축류형 터빈 성능시험에 관한연구)

  • 김동식;조수용
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.59-62
    • /
    • 2001
  • An axial-type turbine design technology is developed. In order to design one-stage turbine, preliminary design method is applied, and then design parameters are chosen after analyzing the gas properties within the turbine passage using the streamline curvature method. Stator blade is designed using C4 Profile, and rotor blade is designed using shape parameters. The output power is measured with various RPM and input power. The experimental result shows that the output power is proportionally decreased with the negative incidence angle.

  • PDF

Optimum Design of a Cross Flow Fan (횡류팬의 최적설계방안)

  • Kim D. H.;Park H. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.176-181
    • /
    • 2003
  • The cross-flow fans are widely used in various applications, due to their large capacity of mass flow and the size compactness. The flow fields of the cross-flow fan is, however, complex and it has many design parameters. Thus the general design guide has not sufficiently established yet, and the design strategies of cross-flow fans have been based on experiments. In the present study, the cross-flow fan performance and its two-dimensional flow characteristics are numerically analyzed by using the STAR-CD. The simulation is done by varying the several design parameters such as impeller blade shapes, the gap between the stabilizer and impeller. The computational results are compared with the experimental data at the fan outlet region. Finally some helpful guides for the optimum design of the cross-flow fan are proposed.

  • PDF

Effects of geometric conditions of blade on Performance of Axial Pan (익형의 기하학적 조건에 따른 축류팬의 성능에 관한 연구)

  • Ahn E. Y.;Kim J. W.;Jeongng E. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.25-29
    • /
    • 2005
  • Axial fan is used for the supplement of large amount of flows. Axial blowers show relatively high efficiency of the system. The present model of axial fan is for cooling a condenser in an air-conditioning unit that exhibits tendency toward compact size. In order to realize the compact model, the width of an axial blade should be cut down in axial distance. Main interest lies on the performance of the axial blowing system with blades having shorter chord length. One of the important design parameters for axial fan is the shape of the blades of it. Design of blades includes the cross-sectional shape and its dimension, including the chord length. We consider two types of blades; one is NACA airfoil with normal chord length and the other is with shortening chord length by $10\%$ of normal airfoil. Axial blower with the modified blades is essential for the compact model of an air-conditioner. The other design parameters are same in the two cases. Using a wind tunnel follows ASHRAE standards carries out evaluation of performance of the system. Detail of flows around the blades is prepared by velocity measurements using PIV. According to performance estimation, the axial blower with short chord blade show quite close to the performance results, including flow rate and pressure rise, of the standard one. The reason of the two similar results is that the flowpatterns depend on Reynolds number based on the chord length of a blade. In this investigation, the critical chord length is found, in which the flows near the airfoil are so unstable and the performance of the system is decreased. A series of figures is for the detail information on the flow.

  • PDF

Process Design of Conical Roll-Shaping for Fabrication of Variable Curvature Spiral Blade (가변곡률을 가진 나선형 블레이드 제작을 위한 원추형 롤 성형 공정설계)

  • Yang, Sungmoon;Shim, Dosik;Ji, Hoseong;Baek, Joonho;Kim, Bongsik;Ahn, Seokyoung;Park, Sanghu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.11
    • /
    • pp.911-918
    • /
    • 2016
  • A conical roll-shaping process was proposed for fabrication of a metallic spiral blade applied to a small-scale wind turbine system. A spiral blade has continuously different curvatures, with a range of 100 to 350 mm radius. To fabricate this complex shape, we developed a conical roll-shaping process having two main conical rollers for feeding a blank sheet, and two cylindrical side rollers for control of local bending. For clear understanding of the process parameters, numerical analyses were conducted using a commercial code, Pam-Stamp. This study optimized the effects of process parameters, such as gap and angle between the main rollers and side rollers, and also the movement of side rollers. In order to increase the forming efficiency, a central rotation point was also calculated by the analytical approach. This developed rolling process can thus be utilized in a sheet metal forming process for obtaining spirally curved sheet metal shapes.

A Study on the Aerodynamic Design of Three-Dimensional Axial Type Turbine Blade (3차원 축류형 터빈익형의 공력설계에 관한 연구)

  • Jang, B.I.;Kim, D.S.;Cho, S.Y.
    • Journal of Power System Engineering
    • /
    • v.5 no.3
    • /
    • pp.38-47
    • /
    • 2001
  • One stage axial type turbine is designed by mean-line analysis, streamline curvature method and blade design method using shape parameters. Tip and hub diameter of the turbine are 300mm and 206.4mm, respectively. The rotating speed is 1800RPM, and the output power is 1.4kW. The flow coefficient is 1.68 and the reaction factor at mean-line is 0.373. The number of stator and rotor of the turbine are 31 and 41, respectively. Mach number of stator exit flow near hub is 0.164. A test rig is developed for performance test to validate a developed design method. The experimental result shows that the maximum efficiency is obtained on the design point.

  • PDF

Wind Turbine Simulator Implementation Considering Tower Effect of Rotor Blade (풍력발전기 회전자 블레이드의 타워효과를 고려한 풍차 시뮬레이터의 구현)

  • Oh, Jeong-Hun;Jeong, Byoung-Chang;Song, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.247-250
    • /
    • 2003
  • To get more realistic wind turbine torque characteristic, it is important to consider many parameters about wind turbine system. One of them is the tower effect which is occurred when a blade is bypassing the wind turbine tower and influences shaft torque fluctuation. In this paper, to emulate the similar torque performance of wind turbine, the wind turbine simulation and experiment with torque fluctuation by blade tower effect are implemented and verified. The simulation model is based on MATLAB Simulink.

  • PDF

Vibration Characteristics of Rotating Composite Blades with Initial Twist (초기 비틀림이 있는 회전하는 복합재료 블레이드의 진동특성에 대한 연구)

  • 기영중;김지환
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.127-130
    • /
    • 2002
  • Vibration analysis of rotating blade is the main purpose of the present study. In this study, general formulation is performed for rotating shell structures including the centrifugal force, Coriolis acceleration and initial twist. Furthermore, simplified equations are derived for the case of an open cylindrical shell. Based on the concept of degenerated shell element with the Reisser-Mindlin's assumptions, the finite element method is adopted for solving the problems. In addition, it is investigated the effect of the stacking sequence of the composites on the vibration characteristics of the blade. The results are summarized for the various parameters such as the speed of rotation and pre-twist of the blade. Also, present results are compared with the previous works and experimental data.

  • PDF