• Title/Summary/Keyword: Blade Loading Loss

Search Result 15, Processing Time 0.021 seconds

Design Program of Centrifugal Backward-Bladed and Forward-Bladed Fans (원심형 후향익 및 원심다익홴의 설계 프로그램)

  • Park, J.-C.;Son, J.-M;Lee, S.;Jo, S.-M.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.48-53
    • /
    • 2001
  • A centrifugal fan design code was developed and included in $DasignFan^{TM}$. This program generates forward -curved and backward-curved bladed centrifugal fan data. With the inverse design concept used in the code, the period of designing a fm, which has given aerodynamic performance with minimal acoustic noise, is significantly shortened.. A centrifugal fan design code, developed in this study and included in $DasignFan^{TM}$, predicts the aerodynamic performance by using mean-line analysis and various loss models. In the period of design a lift force distribution between pressure side and suction side of blade is calculated. And then it is used to calculate steady loading noise from the impeller.

  • PDF

Evaluation of Design Program of Low-Noise Axial Fan (축류형 송풍기 저소음 설계 프로그램의 개발 및 평가)

  • 김기황;박준철;김진화;이승배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.967-972
    • /
    • 2001
  • An axial fan design code, called iDesignFan$^{TM}$, was developed. In this code, three major loss models were used to predicted the aerodynamic performance of a fan. The overall sound pressure level, predicted from steady blade loading, is also used as an input parameter from the third loop of the designing process to acquire most silent fan for the given aerodynamic performance parameters. With this kind of inverse design concept used in this code, the period of designing a fan, which has given aerodynamic performance with minimal acoustic noise, is significantly shortened. The experimental results of a prototype fan, designed by this code, showed that aerodynamic and acoustic performance of an axial fan is reasonably well predicted. Thus, one can design/develop an axial fan in a short time by using the code.e.

  • PDF

Numerical Study of Passive Control with Slotted Blading in Highly Loaded Compressor Cascade at Low Mach Number

  • Ramzi, Mdouki;Bois, Gerard;Abderrahmane, Gahmousse
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.97-103
    • /
    • 2011
  • With the aim to increase blade loadings and stable operating range in highly loaded compressors, this article has been conducted to explore, through a numerical parametric study, the potential of passive control using slotted bladings in cascade configurations. The objective of this numerical investigation is to analyze the influence of location, width and slope of the slots and therefore identify the optimal configuration. The approach is based on two dimensional cascade geometry, low speed regime, steady state and turbulent RANS model. The results show the efficiency of this passive technique to delay separation and enhance aerodynamic performances of the compressor cascade. A maximum of 28.3% reduction in loss coefficient have been reached, the flow turning is increased with approximately $5^0$ and high loading over a wide range of angle of attack have been obtained for the optimized control parameter.

Study on the Performance Analysis of an Axial-Type Turbine with Steam Injection (증기가 분사된 축류형 터빈의 성능해석에 관한 연구)

  • Cho, Soo-Yong;Kim, Soo-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.4 s.13
    • /
    • pp.28-36
    • /
    • 2001
  • Performance analysis is conducted on an axial-type turbine which is used for fire extinction by injecting water or steam into the turbine. Loss models developed by Hacker and Okapuu are applied for predicting the performance of turbine. Pressure loss generated through a turbine is converted to the thermal efficiency, and thermal and gas properties are calculated within a turbine passage. Total-to-total efficiency, total-to-static efficiency, static temperature at the exit of turbine, output power, flow coefficient, blade loading coefficient, and expansion ratio are predicted with changing the amount of injected steam and the rotational speed. The 74 kW class gas turbine developed at KIMM is chosen for performance analysis. The 74 kW class turbine consists of 1 stage like a current developing gas turbine for fire extinction. Water or steam is injected at the end of combustor, and results show that efficiency and output power are dependent on the temperature of injected water or steam and the static temperature at the exit is decreased.

  • PDF

Performance of a 3D pendulum tuned mass damper in offshore wind turbines under multiple hazards and system variations

  • Sun, Chao;Jahangiri, Vahid;Sun, Hui
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.53-65
    • /
    • 2019
  • Misaligned wind-wave and seismic loading render offshore wind turbines suffering from excessive bi-directional vibration. However, most of existing research in this field focused on unidirectional vibration mitigation, which is insufficient for research and real application. Based on the authors' previous work (Sun and Jahangiri 2018), the present study uses a three dimensional pendulum tuned mass damper (3d-PTMD) to mitigate the nacelle structural response in the fore-aft and side-side directions under wind, wave and near-fault ground motions. An analytical model of the offshore wind turbine coupled with the 3d-PTMD is established wherein the interaction between the blades and the tower is modelled. Aerodynamic loading is computed using the Blade Element Momentum (BEM) method where the Prandtl's tip loss factor and the Glauert correction are considered. Wave loading is computed using Morison equation in collaboration with the strip theory. Performance of the 3d-PTMD is examined on a National Renewable Energy Lab (NREL) monopile 5 MW baseline wind turbine under misaligned wind-wave and near-fault ground motions. The robustness of the mitigation performance of the 3d-PTMD under system variations is studied. Dual linear TMDs are used for comparison. Research results show that the 3d-PTMD responds more rapidly and provides better mitigation of the bi-directional response caused by misaligned wind, wave and near-fault ground motions. Under system variations, the 3d-PTMD is found to be more robust than the dual linear TMDs to overcome the detuning effect. Moreover, the 3d-PTMD with a mass ratio of 2% can mitigate the short-term fatigue damage of the offshore wind turbine tower by up to 90%.