• Title/Summary/Keyword: Blade Length Angle

Search Result 81, Processing Time 0.034 seconds

Studies on the Variability of Lowland and Upland Rice Grown under Lowland and Upland Conditions (수도와 육도 품종의 논과 밭 재배에 따른 변이성에 관한 연구)

  • Sang-Jin Choi;Hyun-Ok Choi;Jong-Hoon Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.24 no.4
    • /
    • pp.19-25
    • /
    • 1979
  • Lowland and upland rice were grown under the both of lowland and upland conditions. Ecological variations in plant characteristics such as plant height, leaf emergence, length of leaf blade, leaf angle, leaf width, heading date, culm length, panicle length and straw weight were observed. Plant height, leaf emergence and heading were accelerated under the lowland condition for both lowland and upland varieties, while leaf length, leaf angle, leaf breadth, number of leaves were increased in upland condition for both lowland and upland varieties.

  • PDF

Numerical study to Determine Optimal Design of 500W Darrieus-type Vertical Axis Wind Turbine (500W 급 다리우스형 풍력발전기의 최적설계를 위한 수치적 연구)

  • Lee, Young Tae;Lim, Hee Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.693-702
    • /
    • 2015
  • This paper presents the performance characteristics of a Darrieus-type vertical-axis wind turbine (VAWT) with National Advisory Committee for Aeronautics (NACA) airfoil blades. To estimate the optimum shape of the Darrieus-type wind turbine in accordance with various design parameters, we examine the aerodynamic characteristics and separated flow occurring in the vicinity of the blade, the interaction between the flow and blade, and the torque and power characteristics that are derived from it. We consider several parameters (chord length, rotor diameter, pitch angle, and helical angle) to determine the optimum shape design and characteristics of the interaction with the ambient flow. From our results, rotors with high solidity have a high power coefficient in the low tip-speed ratio (TSR) range. On the contrary, in the low TSR range, rotors with low solidity have a high power coefficient. When the pitch angle at which the airfoil is directed inward equals $-2^{\circ}$ and the helical angle equals $0^{\circ}$, the Darrieus-type VAWT generates maximum power.

A Study on the Fan and Scroll for Ventilation (배기용 Fan Scroll에 대한 연구)

  • Song, S.B.;Park, S.I.;Lee, J.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.402-406
    • /
    • 2000
  • In the Over-The-Range, the outlet size is limited by the industrial standards. Therefor to enlarge the volume of cavity, the installation height of ventilation fan is become small, the system resistance is higher than before. For that reason, the important design variables such as the diameter of a fan, the scroll expansion angle, etc. which play the significant role on flow rate and noise, are confined. In this study, we made an experiment of the diameter of fans relation to scroll expansion angle and investigated flow rate of the length of fans in enlarged cavity volume of OTR, and then we designed the new scroll to improve the flow rate and noise level. As a result, flow rate increased to 110% compared to current scroll and the blade passing frequency of a fan is disappeared by inclined cut-off shapes.

  • PDF

A Study on the Noise Reduction of Axial Flow Fan (축류형 팬의 저소음화에 관한 연구)

  • Oh, J.E.;Yi, S.J.;Lee, S.H.;Lee, D.I.;Kim, C.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.142-149
    • /
    • 1995
  • Axial fans are very useful cooling devices being widely used in many electric and industrial machinery. However those are often accompanying annoying noise. Many efforts have been devoted in order to reduce the fan noise. In this study, the procedure was devided into two major parts in considering effects of design parameters of axial fan concerned with noise ; the fan theory and the Fukano's fan noise study. By using the fan theory we defined stagger angle, camber angle, blade inlet and outlet angle for studying low noise fan. Then the effects of such angles on the flow rate and static pressure were investigated. By using the Fukano's fan noise theory, the relations of the chord length, the rotational speed and the number of blades vs. fan noise are investigated.

  • PDF

Agronomic Characteristics of Korean Landrace in Rice (우리나라 재래벼의 작물학적 특성)

  • 강희경;안대환;박용진
    • Korean Journal of Organic Agriculture
    • /
    • v.11 no.3
    • /
    • pp.75-90
    • /
    • 2003
  • A total of 192 Korean landraces were investigated for the comparison of each other as useful germplasm to organic farming and examined correlation between quantitative traits. Almost Korean landraces were classified into medium-heading variety and average days from seeding to heading was 111.1 days. Plant height and culm length were longer about 20∼40cm than general Japonica cultivar. Average width of leaf blade and average length of panicle were 1.3cm and 22.4cm, respectively, Average number of panicles per plant was 10.0 and almost varieties showed low tilling habit. Average length/width ratio of brown rice was 1.7 and several varieties were long grain type and average 1,000 grain weight was 21.6g. In correlation coefficient among quantitative traits, positive significant correlations were observed between culm length and leaf width, days from seeding to heading, but negative correlations were observed between days from seeding to heading and 1000 grain weight. 27.1% of Korean landraces showed weak and lodging degree in culm strength and 3.6% of total varieties showed purple margin on leaf blade and leaf sheath. In leaf blade angle and flag leaf angle, erect type was 46.9% and 10.9%, respectively. 24.0% of total varieties showed the slow and late degree of leaf senescence. The rate of awned type, waxy type and brown seed coat were 74.5%, 20.3% and 4.2%, respectively. The color of stigma, spikelet, apiculus and awn showed diverse color such as white, brown, red and purple.

  • PDF

Surface Pressure Measurement on a Rotor Blade using Fast-Responding PSP (고속압력감응페인트를 이용한 로터 블레이드 표면 압력 측정)

  • Kim, Kidong;Kwon, Kijung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • The present study was conducted by using fast-responding PSP technique to measure the surface pressure on a small-scale rotor blade in hover. Also, the study was performed to verify the accuracy and investigate its possibility of PSP application for rotor blade pressure measurement. Pulsed laser which has 532 nm wavelength was used as a light source. Lifetime measurement technique was applied. Also, the coated paint on a rotor blade was porous PSP which has faster response time than conventional PSP. The blades had NACA0012 airfoils. The length of rotor blade was 340 mm and chord was 40 mm with rectangular shape 1 set, and 4 sets had several tip sweepback angles. The measured results qualitatively showed that the upper surface pressure decreases with increasing the collective pitch angle. Quantitative pressure coefficients of PSP results were higher approximately 0.4 to 0.7 than the pressure tap data of the NASA experiment.

Design of Centrifugal Impeller for Passenger Car by Flow Field Analysis (유동장 해석을 통한 승용차 원심 회전차의 형상 설계)

  • Lee, Dong-Ryul
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.49-55
    • /
    • 2011
  • For the purpose of the enhancement of the air conditioner performance and fuel effciency, several cases of centrifugal impeller for passenger car air conditioner have been numerically analyzed by changing central angle of blades and length of outlet for shape optimization of the impeller. Commercial CFD program Fluent 6.3.26 has been used to compute velocity, temperature, pressure and turbulence intensity that can lead numerous results. The central angles of two blades and three cases of outlet length led 4~12% and 3.5~6.4% differences of velocity and flow rate, respectively. The velocity distribution near the blade surface was axisymmetric and had a maximum value of 22.19 m/s and velocity of the vertical direction of the impeller showed linear increase with horizontal direction. At case 3 of oultet length, there existed a a minimum pressure value of -133320 Pa.

Geometry Design of a Pitch Controlling Type Horizontal Axis Turbine and Comparison of Power Coefficients (피치각 제어형 수평축 조류 터빈의 형상설계 및 출력계수 비교)

  • Park, Hoon Cheol;Truong, Quang-Tri;Phan, Le-Quang;Ko, Jin Hwan;Lee, Kwang-Soo;Le, Tuyen Quang;Kang, Taesam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.167-173
    • /
    • 2014
  • In this work, based on the blade element-momentum theory (BEMT), we proposed the geometry of a lab-scale horizontal axis tidal turbine with a diameter of 80cm, which can demonstrate the maximum power coefficient, and investigated the effect of blade pitch angle increase on the power coefficient. For validation of the computed power coefficients by the BEMT, we also computed the power coefficient using the computational fluid dynamics (CFD) for each case. For the CFD, 15 times of the turbine radius was used for the length and diameter of the computational domain, and the open boundary condition was prescribed at the boundary of the computational domain. The maximum power coefficients of the turbine acquired by the BEMT and CFD were about 48%, showing a good agreement. Both of the power coefficients computed by the BEMT and CFD tended to decrease when the blade pitch angle increases. The two power coefficients for a given tip-speed ratio were in good agreement. Through the present study, we have confirmed that we can trust the proposed geometry and the computed power coefficients based on the BEMT.

Numerical Analysis on Performance Improvement for Wind Blade by the Groove (Groove를 활용한 풍력블레이드 성능향상을 위한 수치적 연구)

  • Hong, Cheol-Hyun;Seo, Seong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.475-482
    • /
    • 2011
  • This study, a basic study to improve aerodynamic characteristic of a wind blade, explored through CFD how much the lift to drag ratio improves according to the shape of groove formed on the surface of airfoil NACA0015. This study found out that the ratio improves by 8.7% when the ratio between boundary layer(${\delta}$) and the depth of groove(h), the ratio between the depth of groove(h) and the width of groove(d) and the ratio between the length(p) from one groove to the other and the width of groove are 1.1, 0.1 and 1.2 respectively. The number of grooves is two. It was also confirmed that the improvement of the lift to drag ratio is maintained after certain angle of attack.

An Experimental Study on the Performance Characteristics of a Tilting-Type Wind Turbine According to Cylindrical Cam Shape (원통캠 형상에 따른 틸팅식 풍력터빈의 성능에 관한 실험적 연구)

  • Yu, Hwan Suk;Sung, Jaeyong
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.1
    • /
    • pp.23-32
    • /
    • 2021
  • Conventional wind power generators have limited installation sites due to low efficiency due to reverse resistance or high cut-in speed. To compensate for these problems, this study proposed another new type of tilting wind turbine. The key to this method is the structural design of a cylindrical cam with a guide groove that allows the blade to tilt. As the blade rotates by the cam, it tilts according to the angle. In the section that generates torque by receiving drag, the blade is made perpendicular to the wind. And it is a structure that creates a parallel state with the wind in the section where reverse resistance occurs. We prepared six types of cams considering the length of the section subject to drag, reverse resistance, tilting section. The performance was analyzed as the maximum value of the output, torque coefficient, and efficiency coefficient, which is indicated by setting different wind speed and low TSR.