• Title/Summary/Keyword: Blade Length

Search Result 306, Processing Time 0.037 seconds

Variation of Leaf Form of Leaf Variabilities of Natural Population of Quercus spp. (참나무 천연집단(天然集團)의 엽형변이(葉型變異))

  • Kim, Chi Moon;Kwon, Ki Won;Moon, Heung Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.71 no.1
    • /
    • pp.82-89
    • /
    • 1985
  • Morphological characteristics of leaves of 10 natural populations of Quercus mongolica and 9 natural populations of Q. serrata were investigated to study inter-population and intra-population variability as well as interspecies variability. Five leaf form indices, blade length/max. blade width, blade length/petiole length, blade length/vein number, upper 1/3 blade width/max.blade width, upper 1/3 blade width/lower 1/3 blade width, as well as petiole length and vein number were included in the present study of Leaf variabilities of the Quercus population. All of the investigated leaf variabilities except for the case of blade length/petiole length, in Q. serrata indicated highly significant differences among the populations and among the individual trees within population. Both of Q. mongolica and Q. serrata represented different leaf forms between southern populations and northern populations in the indices of blade length/max. blade width, blade length/petiole length and blade length/vein number, and so the leaf forms of northern populations were more similar to the unique characters of Q. mongolica and those of southern populations were more similar to the unique characters of Q. serrata. The variability among individual trees within population was more notable in blade length/petiole length, and petiole length than in other leaf form indices, and also it was more obvious for Mt. Kyeryrong population located in middle part of the country than for other population.

  • PDF

A Study on Aerodynamic Analysis and Design of Wind Turbine Blade (풍력터빈용 날개 설계 및 공력해석에 관한 연구)

  • 김정환;이영호;최민선
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.847-852
    • /
    • 2004
  • The wind turbine blade is the equipment converted wind into electric energy. The effect of the blade has influence of the output power and efficiency of wind turbine. The design of blade is considered of lift-to-drag ratio. structure. a condition of process of manufacture and stable maximum lift coefficient, etc. This study is used the simplified method for design of the aerodynamic blade and aerodynamic analysis used blade element method This Process is programed by delphi-language. The Program has any input values such as tip speed ratio blade length. hub length. a section of shape and max lift-to-drag ratio. The Program displays chord length and twist angle by input value and analyzes performance of the blade.

A Study on Design of Wind Turbine Blade and Aerodynamic Analysis (수평축 풍력터빈 블레이드의 공력해석 및 설계에 관한 연구)

  • Kim, J.H.;Kim, B.S.;Yoon, S.H.;Lee, Y.H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.631-638
    • /
    • 2003
  • The wind turbine blade is the equipment converted wind into electric energy. The effect of the blade has influence of the output power and efficiency of wind turbine. The design of blade is considered of lift-to-drag ratio, structure, a condition of process of manufacture and stable maximum lift coefficient, etc. This study is used the simplified method for design of the aerodynamic blade and aerodynamic analysis used blade element method. This process is programed by delphi-language. The program has any input values such as tip speed ratio, blade length, hub length, a section of shape and max lift-to-drag ratio. The program displays chord length and twist angle by input value and analyzes performance of the blade.

  • PDF

The Variation of Leaf Form of Natural Populations of Quercus variabilis in Korea (굴참나무 천연집단(天然集團)의 엽형(葉型) 변이(變異))

  • Song, Jeong-Ho;Park, Mun-Han;Moon, Heung-Kyu;Han, Sang-Urk;Yi, Jae-Seon
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.5
    • /
    • pp.666-676
    • /
    • 2000
  • For the study of morphological variation of Q. variabilis natural population in Korea, 19 populations were selected through the country in considering latitude, longitude, and geographical characters. Thirty trees were randomly selected from each population and 60 mature leaves were sampled from each tree. Four characters (leaf blade length, maximum blade width, petiole length, and vein number) were measured, and their ratios (the ratio of blade length to maximum blade width, the ratio of blade length to petiole length, the ratio of petiole length to vein number, upper 1/3 blade width to maximum blade width, and upper 1/3 blade width to lower 1/3 blade width) were calculated. 1. Analysis of variance for all leaf characters were significantly different among populations and among individuals within population. Contributions of variance among individuals within population in all the characters were higher than those among populations. Therefore, selection of plus trees may be preferable to desirable populations for breeding program of Q. variabilis. 2. Among principal component analysis for leaf characters, primary 2 principal components appeared to be major variables for leaf form of Q. variabilis because of the loading contribution of 80.5%. The first contribution component was petiole length/vein number and petiole length ; the second one was upper 1/3 blade width/maximum blade width, upper blade width/lower 1/3 blade width and vein number, respectively. 3. Latitude was positively correlated with blade length/maximum blade width and blade length/petiole length, but negatively correlated with petiole length/vein number, upper 1/3 blade width/maximum blade width, upper 1/3 blade width/lower 1/3 blade width, petiole length, and vein number. But, for longitude and altitude the former two traits and the later five traits exhibited the negative and positive correlation, respectively. 4. Cluster analysis using complete linkage method for leaf characters showed two groups to Euclidean distance 1.6. They were group I of population 1. 4, 5, and 13 and group II of population 2, 3, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, and 19. However, group II was divided again to Euclidean distance 1.3, that is a group including population 3, 7, 10, 14, 15, and 17(group II-1) and the other group comprising population 2, 6, 8, 9, 11, 12, 16, 18, and 19(group II-2). This cluster could be mainly observed due to difference among population in aspect (group I : NE, group II-1 : SE, and group II-2 : SW).

  • PDF

Aerodynamic Force Measurement of Counter-Rotating System (동축 반전 시스템의 공력측정)

  • Kim, Su-Yean;Choi, Jong-Wook;Kim, Sung-Cho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.39-42
    • /
    • 2008
  • In the case of the general helicopter among rotorcraft, length of the rotor blade for thrust-generation is longer than that of fuselage and tail rotor is required in order to compensate moment of the fuselage. For those reasons, enough space for take-off and landing should be secured and an accessibility for building is low. Also, the accidents caused by tail rotor occur frequently. However, the case of counter-rotating has merits that tail rotor is unnecessary as well as length of the rotor blade can be shortened but has a weakness that the weight of body is increased. In the present study, aerodynamic force measurement on single rotor system equipped with NACA0012 airfoil, which has aspect ratio of 6 and chord length of 35.5 mm, was carried out. And measurement was conducted with blade which has a half size of the former blade by using single motor counter-rotating. Aerodynamic force measurement was acquired by using 6-component balances and coefficients of thrust and power were derived along the pitch angle varying from 0$^{\circ}$ to 90$^{\circ}$ with the increment of 10$^{\circ}$. Those aerodynamic force data will be utilized for the design and production of brand-new counter-rotating rotor blade system which has same thrust with single blade system and provides a good accessibility to building by reducing its blade length.

  • PDF

Variation of Dynamic Characteristics of a Low Pressure Turbine Blade with Crack Length (저압터빈 블레이드의 균열 길이에 따른 동특성 변화)

  • Yang, Kyeong-Hyeon;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1281-1288
    • /
    • 2009
  • Variation of dynamic characteristics of a low pressure turbine blade with crack length is studied in this paper via both experiments and finite element model. Since most of the turbine blades used in domestic power plants are imported from abroad, it is necessary to understand their dynamic behavior in advance. When experimentally obtained natural frequencies and mode shapes are compared with those from FEM results, they are close to each other in their magnitude. Then, it is more feasible to use finite element model for analyzing the dynamic characteristics of a blade under various operation conditions (rotation speed, temperature, etc) as well as with a crack in the blade.

CFD Analysis of Submersible Slurry Pump with Two Blades (2엽 수중 슬러리 펌프 임펠러 전산해석)

  • Yun, Jeong-Eui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.263-268
    • /
    • 2011
  • We aimed to develop a non-clogging submersible slurry pump with two blades to replace the conventional vortex pump. To do this, we simulated the effect of parameters such as the blade angle $\beta$ and the blade-length angle $\alpha$ on pump efficiency. We used the commercial codes ANSYS CFX and BladeGen. The results showed that the best blade shape was obtained for $\beta$ = $30^{\circ}$ and that the pump efficiency was proportional to $\alpha$ in the simulated range.

Preliminary Study on Development of Length-Variable Rotor Blade for Unmanned Helicopter (무인 헬리콥터용 길이가변 로터 블레이드 개발을 위한 선행연구)

  • Chun, Ju-Hong;Byun, Young-Seop;Lee, Byoung-Eon;Song, Woo-Jin;Kim, Jeong;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.73-79
    • /
    • 2010
  • A preliminary study on a length-variable rotor blade for a small unmanned helicopter has been conducted. After surveys on previous researches, and examining requirements for application to a small unmanned helicopter, a length-variable rotor blade was designed and manufactured to be driven by centrifugal force from rotor revolution with no mechanical actuator. The rotor blade was divided into a fixed inboard section and an outboard section sliding in span-wise direction. In order to determine the operating conditions of the length-variable rotor during revolution, and to derive the design variables of extension spring and rotor weight, a series of analyses from multi-body dynamics solution were conducted. The manufactured prototype was verified of its length-varying mechanism from a rotor stand, the results and required future improvements are discussed.

Effect of Pitch Angle and Blade Length on an Axial Flow Fan Performance (피치각과 날개 길이에 따른 축류팬의 성능)

  • Jeon, Sung-Taek;Cho, Jin-Pyo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.1
    • /
    • pp.43-48
    • /
    • 2013
  • In this study, the performance of an impeller according to blade length and pitch angle was studied experimentally by building a variable pitch impeller while changing blade length to review the effect of blade length and pitch angle on a fan's performance. The pitch angle was changed in six steps from $20^{\circ}{\sim}45^{\circ}$ at intervals of $5^{\circ}$ while the blade lengths were changed to 90 mm, 100 mm, 110 mm and 120 mm with an identical airfoil shape while carrying out the experiment. The results are summarized as follows: The air flow per static pressure of axial fans increased linearly with increase of pitch angle, but the high static pressure showed a decrease at a pitch angle of $35^{\circ}$. The shaft power increased proportionally to the pitch angle at all blade lengths; the larger the pitch angle, the larger the measured increase of shaft power. This is because the drag at the fan's front increases with the pitch angle. In the axial fans considered in this research, the flow and increase of static pressure amount increased up to a pitch angle of $30^{\circ}$ but decreased rapidly above $35^{\circ}$.

Effect of pitch angle and blade length on an axial flow fan performance (피치각과 날개 길이 변화에 따른 축류팬의 성능 및 소음 특성에 관한 실험적 연구)

  • Jeon, Sung-Taek;Cho, Jin-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3170-3176
    • /
    • 2013
  • In this study, the performance of an impeller according to blade length and pitch angle was studied experimentally by building a variable pitch impeller while changing blade length to review the effect of blade length and pitch angle on a fan's performance and sound characteristics. The pitch angle was changed in six steps from $20^{\circ}{\sim}45^{\circ}$ at intervals of $5^{\circ}$ while the blade lengths were changed 80 mm, 90 mm, 100 mm, 110 mm and 120 mm with an identical airfoil shape while carrying out the experiment.