• Title/Summary/Keyword: Blade Force

Search Result 272, Processing Time 0.023 seconds

Transient Vibration Analysis of a Multi-packet Blade System Excited by Nozzle Jet Forces (노즐 분사력에 의해 가진되는 다중 패킷 블레이드계의 과도 진동 해석)

  • Lim, Ha-Seong;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.7
    • /
    • pp.711-717
    • /
    • 2008
  • A modeling method for the modal and the transient vibration analysis of a multi-packet blade system excited by nozzle jet forces is presented in this paper. Blades are idealized as cantilever beams and the elastic structures like disc and shroud connecting blades are modeled as coupling stiffnesses. A modified Campbell diagram is proposed to identify true resonance frequencies of the multi-packet blade system. Different from the SAFE diagram that employs three dimensional space, the modified Campbell diagram Proposed in this study employs a plane to find the true resonance frequencies. To verify the existence of true resonance frequencies, nozzle jet forces are modeled as periodic forces and transient vibration analysis were performed with the modeling method.

Rotational Behavior Tests of Smart Blades

  • Ogawa, Akinori;Hashimoto, Ryosaku;Matsuda, Yukio;Sofue, Yasushi;Hojo, Masahito
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.867-869
    • /
    • 2004
  • A smart blade conception has been proposed by the authors. With stretching-twisting coupling effect, the blade is twisted by centrifugal load or ambient temperature change. In this paper, the blades, made by three kinds of anti-symmetric laminates, are investigated by rotational tests. The results show the angle of smart blade tips increases in proportion to the 2nd power of a rotating speed and is well in agreement with the numerical results by FEM.

  • PDF

Structure Design and Experimental Appraisal of the Drag Force Type Vertical Axis Wind Turbine (수직축 항력식 풍력터빈의 구조설계 및 실험평가)

  • Kim Dong-Keon;Keum Jong-Yoon;Yoon Soon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.278-286
    • /
    • 2006
  • Experiments were conducted to estimate the performance of drag force type vertical axis wind turbine with an opening-shutting rotor. It was operated by the difference in drag force generated on both sides of the blades. The rotational speed was measured by a tachometer in a wind tunnel and the tunnel wind speed was measured by using a pilot-static tube and a micro manometer. The performance test for a prototype was accomplished by calculating power, power coefficient, torque coefficient from the measurement of torque and rpm by a dynamometer controller. Various design parameters, such as the number of blades(B), blade aspect ratio(W/R), angle of blades$(\alpha)$ and drag coefficient acting on a blade, were considered for optimal conditions. At the experiment of miniature model, maximum efficiency was found at N=15, $\alpha=60^{\circ}$ and W/R=0.32. The measured test variables were power, torque, rotational speed, and wind speeds. The data presented are in the form of power and torque coefficients as a function of tip-speed ratio V/U. Maximum power was found in case of $\Omega=0.33$, when the power and torque coefficient were 0.14 and 0.37 respectively. Comparing model test with prototype test, similarity law by advance ratio for vertical axis wind turbine was confirmed.

Computational Fluid Dynamics of Cavitating Flow in Mixed Flow Pump with Closed Type Impeller

  • Kobayashi, Katsutoshi;Chiba, Yoshimasa
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.2
    • /
    • pp.113-121
    • /
    • 2010
  • LES(Large Eddy Simulation) with a cavitation model was performed to calculate an unsteady flow for a mixed flow pump with a closed type impeller. First, the comparison between the numerical and experimental results was done to evaluate a computational accuracy. Second, the torque acting on the blade was calculated by simulation to investigate how the cavitation caused the fluctuation of torque. The absolute pressure around the leading edge on the suction side of blade surface had positive impulsive peaks in both the numerical and experimental results. The simulation showed that those peaks were caused by the cavitaion which contracted and vanished around the leading edge. The absolute pressure was predicted by simulation with -10% error. The absolute pressure around the trailing edge on the suction side of blade surface had no impulsive peaks in both the numerical and experimental results, because the absolute pressure was 100 times higher than the saturated vapor pressure. The simulation results showed that the cavitation was generated around the throat, then contracted and finally vanished. The simulated pump had five throats and cavitation behaviors such as contraction and vanishing around five throats were different from each other. For instance, the cavitations around those five throats were not vanished at the same time. When the cavitation was contracted and finally vanished, the absolute pressure on the blade surface was increased. When the cavitation was contracted around the throat located on the pressure side of blade surface, the pressure became high on the pressure side of blade surface. It caused the 1.4 times higher impulsive peak in the torque than the averaged value. On the other hand, when the cavitation was contracted around the throat located on the suction side of blade surface, the pressure became high on the suction side of blade surface. It caused the 0.4 times lower impulsive peak in the torque than the averaged value. The cavitation around the throat caused the large fluctuation in torque acting on the blade.

A Study on the Evaluation of Structural Properties of Wind Turbine Blade-Part2 (풍력터빈의 구조특성 평가에 관한 연구-Part2)

  • Lee, Kyoung-Soo;Huque, Ziaul;Kommalapati, Raghava;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.1
    • /
    • pp.65-73
    • /
    • 2015
  • This paper presents the structural model verification process of whole wind turbine blade including blade model which proposed in Part1 paper. The National Renewable Energy Laboratory (NREL) Phase VI wind turbine which the wind tunnel and structural test data has publicly available is used for the study. In the Part1 of this paper, the processes of structural model development and verification process of blade only are introduced. The whole wind turbine composed by blade, rotor, nacelle and tower. Even though NREL has reported the measured values, the material properties of blade and machinery parts are not clear but should be tested. Compared with the other parts, the tower which made by steel pipe is rather simple. Since it does not need any considerations. By the help of simple eigen-value analysis, the accuracy of structural stiffness and mass value of whole wind turbine system was verified by comparing with NREL's reported value. NREL has reported the natural frequency of blade, whole turbine, turbine without blade and tower only models. According to the comparative studies, the proposed material and mass properties are within acceptable range, but need to be discussing in future studies, because our material properties of blade does not match with NREL's measured values.

Comparison of Meat Quality Characteristics of Wet- and Dry-aging Pork Belly and Shoulder Blade

  • Hwang, Young-Hwa;Sabikun, Nahar;Ismail, Ishamri;Joo, Seon-Tea
    • Food Science of Animal Resources
    • /
    • v.38 no.5
    • /
    • pp.950-958
    • /
    • 2018
  • The physicochemical characteristics and oxidative stability of wet-aged and dry-aged pork cuts were investigated at different aging periods (1, 7, 14 and 21 d). Samples were assigned into four groups in terms of shoulder blade-wet aging (SW), shoulder blade-dry aging (SD), belly-wet aging (BW), and belly-dry aging (BD). SD showed significantly higher pH at 21 d of aging than the other samples. Wet-aged cuts had significantly higher released water (RW) %, lightness ($L^*$) and shear force compared to the dry-aged meats. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed greater degradation of proteins for dry-aged cuts than the wet-aged cuts. At the end of aging, wet-aged cuts showed significantly lower thiobarbituric acid-reactive substances (TBARS) value than the dry-aged samples, indicating higher oxidative stability for wet-aged pork cuts. However, dry-aging led to higher degradation of proteins resulting in increased water-holding capacity (WHC) and decreased shear force value.

Stress Analysis with respect to the change of the Shape of Screw Blade and the Hole for Centrifuge (원심분리기용 스크류의 블레이드 및 원공형상변화에 따른 음력해석)

  • 이성욱;심재준;한동섭;한근조;안찬우;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.749-752
    • /
    • 2002
  • In this study, we carried out the finite element analysis about screw that is the weakest part of the centrifuge for sewage management. Structural analysis was done with respect to the change of outer radius and thickness of screw blade and screw with sewage discharge hole. If the area of circular hole is equal to that of extended holes, maximum equivalent stress was compared between hole and extended hole. Centrifugal force on account of rotation of 4000 rpm was applied the screw. The results are as follows : 1 . When the larger radius and thickness of screw blade was used, the higher maximum equivalent stress is occurred. 2. When the larger radius of sewage discharge hale was used, the higher maximum equivalent stress is occurred. 3. When the longer parallel part length of extended hole was used, the higher maximum equivalent stress is occurred. 4. If the extended hole with the same discharging area which circular hole uses, the maximum equivalent stress is lower.

  • PDF

Design Optimization of A Multi-Blade Centrifugal Fan with Navier-Stokes Analysis (삼차원 Navier-Stokes 해석을 이용한 원심다익송풍기의 최적설계)

  • Seo, Seoung-Jin;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2157-2161
    • /
    • 2003
  • In this paper, the response surface method using three-dimensional Navier-Stokes analysis to optimize the shape of a forward-curved blades centrifugal fan, is described. For numerical analysis, Reynolds-averaged Navier-Stokes equations with standard k-e turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in forward-curved blades centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Linear Upwind Differencing Scheme(LUDS) is used to approximate the convection terms in the governing equations. SIMPLEC algorithm is used as a velocity-pressure correction procedure. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time

  • PDF

A comparison of the performance characteristics of large 2 MW and 3 MW wind turbines on existing onshore wind farms

  • Bilgili, Mehmet;Ekinci, Firat;Demirdelen, Tugce
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.81-87
    • /
    • 2021
  • The aim of the current study is to compare the performance of large 2 MW and 3 MW wind turbines operating on existing onshore wind farms using Blade Element Momentum (BEM) theory and Angular Momentum (AM) theory and illustrate the performance characteristic curves of the turbines as a function of wind speed (U∞). To achieve this, the measurement data obtained from two different Wind Energy Power Plants (WEPPs) located in the Hatay region of Turkey was used. Two different horizontal-axis wind turbines with capacities of 2 MW and 3 MW were selected for evaluation and comparison. The hub-height wind speed (UD), turbine power output (P), atmospheric air temperature (Tatm) and turbine rotational speed (Ω) data were used in the evaluation of the turbine performance characteristics. Curves of turbine power output (P), axial flow induction factor (a), turbine rotational speed (Ω), turbine power coefficient (CP), blade tip speed ratio (λ), thrust force coefficient (CT) and thrust force (T) as a function of U∞ were obtained for the 2 MW and 3 MW wind turbines and these characteristic curves were compared. Results revealed that, for the same wind speed conditions, the higher-capacity wind turbine (3 MW) was operating at higher turbine power coefficient rates, while rotating at lower rotational speed ratios than the lower-capacity wind turbine (2 MW).

An Experimental Study on the Modal Test of Gas Turbine Blade Integrity (가스터빈 블레이드 MODAL TEST를 위한 실험적 방법에 관한 연구)

  • 조철환;양경현;김성휘
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1388-1392
    • /
    • 2001
  • In this paper, an experimental method of several modal analyses was devised to iify the vibration characteristics of G/T blade in power plants. Also, it is being applied this method to establish the standard category of natural frequency of new developed blades. So acceptance margin to avoid resonance due to nozzle waking force is being established for new blades. It is expected to improve the availability of G/T blades by using the result of this study.

  • PDF