• Title/Summary/Keyword: Blade Antenna

Search Result 15, Processing Time 0.031 seconds

Micro-vibration Isolation Performance of X-band Antenna using Blade Gear (블레이드 기어를 적용한 X-밴드 안테나 미소진동 절연성능)

  • Jeon, Su-Hyeon;Kwon, Seong-Cheol;Kim, Tae-Hong;Kim, Yong-Hoon;Oh, Hyun-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.893-899
    • /
    • 2014
  • X-band antenna has been widely used to effectively transmit the high resolution image data from the observation satellite to the ground station. To achieve above mission, X-band antenna is mainly composed of the 2-axis gimbal system using stepping motors and gears. However, the micro-vibration induced by the stepping motor actuation and the imperfect gear teeth alignment during this on-orbit operation is the main source of image quality degradation. In this paper, X-band antenna combined with a blade gear for micro-vibration isolation was suggested and investigated. The structural safety of the blade gear with low rotational stiffness was confirmed by structure analysis based on the derived torque budget. The isolation performance of the X-band antenna with the blade gear was verified through micro-vibration measurement test using the dedicated micro-vibration measurement device proposed in this study.

  • PDF

Performance Evaluation and Analysis of a VHF-UHF Blade Antenna (VHF-UHF 대역 블레이드 안테나의 성능 평가 및 분석)

  • Go, Jooseoc;Byun, Gangil;Kim, Kichul;Ju, Jeungmin;Choo, Hosung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.10
    • /
    • pp.951-957
    • /
    • 2013
  • In this paper, we propose a performance evaluation process of aircraft blade antennas. The process consists of various sub-processes that should be considered for a stable communication link with the base station. The process begins with the settlement of the ground shape and size to evaluate the impedance matching characteristics of a stand-alone antenna. Next, the main communications area of the antenna is determined by considering a flight scenario, and then the minimum gain requirements of the antenna are derived in the operating frequency band. Finally, the proposed evaluation process is applied for a commercial aircraft blade antenna. The results demonstrate that the proposed process is suitable to be adopted for the evaluation of aircraft blade antennas.

Bird Strike Analysis and Test Report of Dummy and Real Blade Antenna (더미 및 실 블레이드 안테나 조류충돌 해석 및 시험)

  • Jeong, Hanui
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.24-31
    • /
    • 2018
  • The objectives of this study is to carry out Bird strike analysis and tests of a blade antenna of aircraft. FEMs (Finite Element Models) were created for the analysis, while dummy and real antennas were used for the bird strike tests. In the analysis, birds were modeled with SPH (Smooth Particle Hydrodynamics) method, and the behaviors of the bird, antenna, and joint structure between antenna and aircraft fuselage were simulated with the FSI (Fluid-Structure Interaction) method. After the bird strike test was performed, the results of the analysis and test showed that they had a positive relationship. The damage of antenna and bolted joint was checked, and the structural integrity of the airframe was proved.

Signal Processing Algorithm to Reduce RWR Electro-Magnetic Interference with Tail Rotor Blade of Helicopter

  • Im, Hyo-Bin;Go, Eun-Kyoung;Jeong, Un-Seob;Lyu, Si-Chan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.117-124
    • /
    • 2009
  • In the environment where various and complicated threat signals exist, RWR (Radar Warning Receiver), which can warn pilot of the existence of threats, has long been a necessary electronic warfare (EW) system to improve survivability of aircraft. The angle of arrival (AOA) information, the most reliable sorting parameter in the RWR, is measured by means of four-quadrant amplitude comparison direction finding (DF) technique. Each of four antennas (usually spiral antenna) of DF unit covers one of four quadrant zones, with 90 degrees apart with nearby antenna. According to the location of antenna installed in helicopter, RWR is subject to signal loss and interference by helicopter body and structures including tail bumper, rotor blade, and so on, causing a difficulty of detecting hostile emitters. In this paper, the performance degradation caused by signal interference by tail rotor blades has been estimated by measuring amplitude video signals into which RWR converts RF signals in case a part of antenna is screened by real tail rotor blade in anechoic chamber. The results show that corruption of pulse amplitude (PA) is main cause of DF error. We have proposed two algorithms for resolving the interference by tail rotor blades as below: First, expand the AOA group range for pulse grouping at the first signal analysis phase. Second, merge each of pulse trains with the other, that signal parameter except PRI and AOA is similar, after the first signal analysis phase. The presented method makes it possible to use RWR by reducing interference caused by blade screening in case antenna is screened by tail rotor blades.

Micro-vibration Isolation Performance of X-band Antenna Using Blade Gear (블레이드 기어를 적용한 2축 짐발 구동 안테나의 미소진동 절연성능)

  • Jeon, Su-Hyeon;Kwon, Seong-Cheol;Kim, Tae-Hong;Kim, Yong-Hoon;Oh, Hyun-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.5
    • /
    • pp.313-320
    • /
    • 2015
  • A 2-axis gimbal-type X-band antenna has been widely used to effectively transmit the high resolution image data from the observation satellite to the desired ground station. However, a discontinuous stepper motor activation for rotating the pointing mechanism in azimuth and elevation directions induces undesirable micro-vibration disturbances which can result in the image quality degradation of a high-resolution observation satellite. To enhance the image quality of the observation satellite, attenuating the micro-vibration induced by an activation of the stepper motor for rotational movements of the antenna is important task. In this study, we proposed a low-rotational-stiffness blade gear applied to the output shaft of the stepper motor to obtain the micro-vibration isolation performance. The design of the blade gear was performed through the structure analysis such that this gear is satisfied with the margin of safety rule under the derived torque budget. In addition, the micro-vibration isolation performance of the blade gear was verified through the micro-vibration measurement test using the dedicated micro-vibration measurement device proposed in this study.

Design of a VHF-UHF Band Blade Antenna for Aircraft Applications (VHF-UHF 대역 항공기용 블레이드 안테나 설계)

  • Go, Jooseoc;Hur, Jun;Kay, Youngchul;Choo, Hosung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.6
    • /
    • pp.619-627
    • /
    • 2014
  • In this paper, we designed a blade antenna for VHF-UHF band(500 MHz~3 GHz) to be used as aircraft antennas. Unlike previously reported researches that use high-dielectric materials and insert rectangular extended grounds, the antenna structure was designed by optimizing the curvature of both a radiator and an extended ground whose shape is varied by changing the exponent of an n-th polynomial. Based on the optimized structure, we measured impedance matching and gain performances to evaluate the antenna in the VHF-UHF band(500 MHz~3 GHz). As a result, we confirmed that the antenna shows matching characteristics of less than -6 dB and has average gains of greater than -5 dBi in the entire VHF-UHF band.

The Input Characteristics of Elliptic Disk-Loaded Antenna with Ellipticity Ratio (임의의 타원율을 가진 타원형 디스크가 로딩된 모노폴 안테나의 입력 특성)

  • 이재욱;송명선
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2001.11a
    • /
    • pp.119-122
    • /
    • 2001
  • In this paper, an elliptic disk-loaded antenna having frequency shift characteristics with the same height of the simple monopole is studied. The proposed antenna is composed of an ellitptic disk with arbitrary ellipticity ratio. The eigenmode representations in each region of given structure are useful for the analysis of the canonical monopoly, circular disk-loaded monopole and circular dielectric-loaded top-hat monopole antennas using the artificical ground plane. The comparison between the elliptic and circular disk-leaded antenna is carried out. The effect of the shape of the loaded disk and the ellipticity ratio of the loaded disk on the input impedances, the return loss and frequency shift is also studied. We have computed the given structures using the CST MW Studio version 3.0. The typical blade antenna can be obtained by modifying and extending the proposed structure with the λ/4 balun removing the stray capacitances existing between the loaded disk and the ground plane.

  • PDF

Structural Analysis for Newly Installed Blade Antenna of Rotorcraft (신규 블레이드 안테나 장착을 위한 노후 회전익 항공기 구조 해석 연구)

  • Yu, Jeong-O;Kim, Jae-Yong;Choi, Hang-Suk
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.106-112
    • /
    • 2021
  • In this study, we performed a design and structural analysis of a blade-shaped antenna installation on the rear fuselage of a rotary wing aircraft operated by the military. When the structure is damaged while the aircraft is in operation, it is separated from the aircraft main structure and may collide with the rotor or blades to cause the aircraft to crash. Therefore, structural safety for the modified structure must be secured. The design requirement for the newly installed modified part were established, and the load condition was constructed by applying the load that may occur in the aircraft after the modification. Structure safety for the modified structure was secured by performing structure analysis. To analysis stress and deformation of aircraft structure, we developed finite element model and verified it by using hand calculation method. We confirmed the safety of the modified structure through the final structural integrity analysis.

Aircraft Embedded Antenna Design for JTDLS Complete System (JTDLS 완성형 체계를 위한 항공기 내장형 안테나 설계)

  • Yeo, Su-Cheol;Kang, Byoung-Wook;Choi, Hyo-Gi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.451-456
    • /
    • 2020
  • In this paper, we studied the method of designing a embedded antenna for mounting on the JTDLS complete aircraft. The proposed antenna satisfies the MIDS-LVT operation frequency band and is designed as a broadband in consideration of expandability. As a result of the design, it was confirmed that the proposed antenna has similar electrical performance to the existing blade antenna and has broadband characteristics. As a result of EM analysis, the antenna was mounted on the top and bottom parts of the aircraft to check the mount of the aircraft, and it was confirmed that both the top and bottom parts had good radiation characteristics. The technology acquired through this study is judged to be applicable to the JTDLS completed aircraft.

Development of VHF-Band Conformal Antenna for UAV Mounting (무인기 탑재용 VHF 대역 형상적응형 안테나 개발)

  • Euntae Jung;Juhyun Lee;Jinwoo Park;Byunggil Yu;Kichul Kim;Jaesoo Jung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.54-63
    • /
    • 2023
  • In this paper, a VHF band conformal antenna for UAV mounting was developed. The proposed antenna was designed as an shape-adaptive structure by minimizing the antenna height to be advantageous in RCS reduction performance. As for the antenna radiator, the outer radiator was arranged around the inner radiator to apply the CRLH zeroth-order resonance structure. With this structure, the height of the antenna was minimized, and it was reduced by about 70 % compared to the existing blade antenna. In addition, for impedance matching, the intermediate frequency bandwidth of the VHF band was improved through the sleeve pin of the inner radiator, and the low frequency bandwidth of the VHF band was improved by applying an EMI shielding gasket to the shorting pin of the outer radiator. The proposed antenna was manufactured and measured to verify the performance of the device and the performance after UAV mounting. As a result, the standard was satisfied for the operating frequency.