• Title/Summary/Keyword: Blade Angles

Search Result 200, Processing Time 0.027 seconds

Design and Performance Analysis of Steam Turbine for Variations of Degree of Reaction (반동도에 따른 증기터빈의 설계 및 성능해석)

  • Shin, Jung-Ha;Lee, Geun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1391-1398
    • /
    • 2011
  • Design and performance analysis of a steam turbine for variations of degree of reaction were performed by computer simulation. Design parameters such as blade angles, exit areas, and heights of the nozzle and moving blade were represented as functions of the degree of reaction. The main performance factors such as turbine power, diagram efficiency, and axial thrust were also expressed in terms of the degree of reaction. For further information about the design and performance, the blade angles and main performance factors were investigated as functions of the flow coefficient. The turbine power and diagram efficiency reached a maximum value for a given degree of reaction and flow coefficient, and the symmetric shape of the moving blade showed distortion as the degree of reaction was increased.

Off-Design Performance Prediction of an Axial Flow Compressor Stage Using Simple Loss Correlations (간단한 손실모델을 이용한 단단축류압축기 탈설계점 성능예측)

  • 김병남;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3357-3368
    • /
    • 1994
  • Total pressure losses required to calculate the total-to-total efficiency are estimated by integrating empirical loss coefficients of four loss mechanisms along the mean-line of blades as follows; blade profile loss, secondary flow loss, end wall loss and tip clearance loss. The off-design points are obtained on the basis of Howell's off-design performance of a compressor cascade. Also, inlet-outlet air angles and camber angle are obtained from semi-empirical relations of transonic airfoils' minimum loss incidence and deviation angles. And nominal point is replaced by the design point. It is concluded that relatively simple loss models and Howell's off-design data permit us to calculate the off-design performance with satisfactory accuracy. And this method can be easily extended for off-design performance prediction of multi-stage compressors.

Prediction of Aerodynamic Loads for NREL Phase VI Wind Turbine Blade in Yawed Condition

  • Ryu, Ki-Wahn;Kang, Seung-Hee;Seo, Yun-Ho;Lee, Wook-Ryun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.157-166
    • /
    • 2016
  • Aerodynamic loads for a horizontal axis wind turbine of the National Renewable Energy Laboratory (NREL) Phase VI rotor in yawed condition were predicted by using the blade element momentum theorem. The classical blade element momentum theorem was complemented by several aerodynamic corrections and models including the Pitt and Peters' yaw correction, Buhl's wake correction, Prandtl's tip loss model, Du and Selig's three-dimensional (3-D) stall delay model, etc. Changes of the aerodynamic loads according to the azimuth angle acting on the span-wise location of the NREL Phase VI blade were compared with the experimental data with various yaw angles and inflow speeds. The computational flow chart for the classical blade element momentum theorem was adequately modified to accurately calculate the combined functions of additional corrections and models stated above. A successive under-relaxation technique was developed and applied to prevent possible failure during the iteration process. Changes of the angle of attack according to the azimuth angle at the specified radial location of the blade were also obtained. The proposed numerical procedure was verified, and the predicted data of aerodynamic loads for the NREL Phase VI rotor bears an extremely close resemblance to those of the experimental data.

Effects of Various Injection Hole Shapes and Injection Angles on the Characteristics of Turbine Blade Leading Edge Film Cooling (분사홀 형상과 분사각 변화가 터빈블레이드 선단 막냉각 특성에 미치는 영향)

  • Kim, Yun-Je;Gwon, Dong-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.933-943
    • /
    • 2001
  • Using a semi-circled blunt body model, the geometrical effects of injection hole on the turbine blade leading edge film cooling are investigated. The film cooling characteristics of two shaped holes (laterally- and streamwise-diffused holes) and three cylindrical holes with different lateral injection angles, 30°, 45°, 60°, respectively, are compared with those of cylindrical hole with no lateral injection angle experimentally and numerically. Kidney vortices, which decrease the adiabatic film cooling effectiveness, appear on downstream of the cylindrical hole with no lateral injection angle. At downstream of the two shaped holes have better film cooling characteristics than the cylindrical one. Instead of kidney vortices, single vortex appears on downstream of injection holes with lateral injection angle. The adiabatic film cooling effectiveness is symmetrically distributed along the lateral direction downstream of the cylindrical hole with no lateral injection angle. But, at downstream of the cylindrical holes with lateral injection angle, the distribution of adiabatic film cooling effectiveness in the lateral direction shows asymmetric nature and high adiabatic film cooling effectiveness regions are more widely distributed than those of the cylindrical hole with no lateral injection angle. As the blowing ratio increases, also, the effects of hole shapes and injection angles increase.

Experimental Study of Trailing Edge Shape of Forward Curved Blade upon Radiated Noise (원심 전향익 송풍기 날개 후단의 형상에 따른 소음 분석)

  • KIM, H.-J.;JUNG, K.-H.;LEE, C.-J.;LEE, S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.137-142
    • /
    • 2000
  • The turbulent broadband sound power from a forward curved bladed fan can be modeled by the trailing edge noise. The trailing edge noise is usually influenced by inflow turbulence, separation, and boundary layer on the blade. This paper reports the effects of the solidity (C/s) and the stagger angles upon the trailing edge noise with respect to the trailing edge shapes of circular-arc cambered blade of multi-bladed fan, and discusses the major physical mechanism of reduced noise lot the circular trailing-edged case.

  • PDF

Performance Characteristics according to the Outlet Impeller Blade Shape of a Centrifugal Blower (원심블로어 임펠러 토출 날개 형상에 따른 성능특성)

  • Lee, Jong-Sung;Jeon, Hyun-Jun;Jang, Choon-Man
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.6
    • /
    • pp.12-18
    • /
    • 2013
  • This paper presents the performance characteristics of a centrifugal blower using the design parameters of an impeller blade. Two design variables, the bending length from the blade trailing edge and bending angles of an impeller blade, are introduced to analyze the effects on the blower performance. Three-dimensional Navier-Stokes equations with shear stress transport turbulence model are introduced to analyze the performance and internal flow of the blower. Relatively good agreement between experimental measurements and numerical simulation at the design flow condition is obtained. Throughout present study, it is known that pressure increases as the bending length from the trailing edge and bending angle increase while efficiency decreases. But efficiency is decreased. Detailed flow field inside the centrifugal blower is also analyzed and compared.

Aerodynamic Design Program for Centrifugal/Mixed-flow Compressors - Part II : Three Dimensional Profile Design of Impellers - (원심/사류압축기의 공력설계 프로그램 개발 - 제2부 : 임펠러의 3차원 형상설계 -)

  • Oh, Jong-Sik
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.464-468
    • /
    • 2003
  • A general program of three dimensional profile design of impellers for centrifugal/fixed-flow compressors is successfully commercialized using Bezier curves and quasi-3D flow analysis methods. Control points for meridional hub and shroud contours and blade camberline angles are arbitrarily changed to give smooth Bezier curves. With specified blade normal thicknesses, contructed geometry is instantly analyzed using flow analysis methods to be checked.

  • PDF

Numerical Study on the Effect of Turbine Blade Shape on Performance Characteristics of a Dental Air Turbine Handpiece (터빈 블레이드 형상에 따른 의료용 에어터빈 핸드피스의 성능 특성에 관한 수치적 연구)

  • Lee, Jeong-Ho;Kim, Kui-Soon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.1
    • /
    • pp.34-42
    • /
    • 2009
  • High-speed air turbine handpieces have been used as a dental cutting tool in clinical dentistry for over 50 years, but little study has been reported on their performance analysis. Therefore, the effect of turbine blade shape on performance characteristics of dental air turbine handpiece were studied using CFD in this paper. Computations have been performed for five different positions of turbine blade by using frozen rotor method that is one of steady-state method. The characteristics of turbine blade for shapes and reflection angles were analyzed. As a result of the computation, torque is increased by increasing the reflection angle of turbine blade.

Numerical Analysis of Aerodynamic Characteristics and Performance Analysis on H-rotor with Various Solidities (솔리디티에 따른 H-로터의 공기역학적 특성 및 성능해석)

  • Joo, Sungjun;Lee, Juhee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.5-13
    • /
    • 2016
  • Three-dimensional unsteady numerical analysis has been performed to observe aerodynamic characteristics of a H-rotor. Generally, the structure of the H-rotor is simple but the aerodynamic characteristics are exceptionably complicated since the angle of attacks and incident velocities to a blade are considerably varied according to the azimuth angles and solidities. The blade in the upwind revolution between 0 to 180 degree obtains aerodynamic energy from the free stream but the blade in the downwind revolution between 180 to 360 degree does not. When the rotating speed increases, the blade in the downwind revolution accelerates the air around the blade like a fan and it consumes the energy and shows negative torque in the area. On the other hand, the direction of the free stream is bent because of the interaction between blade the free stream. Therefore, the operation point (highest power coefficient) appears at a lower tip-speed-ratio what it is expected.

Development of an aerodynamic design program for a small wind turbine blade (소형풍력발전기용 블레이드 공력설계 프로그램 개발)

  • Yoon, Jin-Yong;Paek, In-Su;Yoo, Neung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.40-47
    • /
    • 2013
  • An aerodynamic design tool was developed for small wind turbine blades based on the blade element momentum theory. The lift and drag coefficients of blades that are needed for aerodynamic blade design were obtained in real time from the Xfoil program developed at University of Illinois. While running, the developed tool automatically accesses the Xfoil program, runs it with proper aerodynamic and airfoil properties, and finally obtains lift and drag coefficients. The obtained aerodynamic coefficients are then used to find out optimal twist angles and chord lengths of the airfoils. The developed tool was used to design a wind turbine blade using low Reynolds number airfoils, SG6040 and SG6043 to have its maximum power coefficient at a specified tip speed ratio. The performance of the blade was verified by a commercial code well known for its prediction accuracies.