• Title/Summary/Keyword: Blade Angles

Search Result 200, Processing Time 0.033 seconds

Numerical Simulation of Electromagnetic Wave Scattering from Offshore Wind Turbine (해상 풍력발전기의 전자기파 산란에 관한 수치 시뮬레이션)

  • Kim, Kook-Hyun;Cho, Dae-Seung;Choi, Gil-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.5
    • /
    • pp.536-544
    • /
    • 2009
  • The performance of radars operated near an offshore wind farm region may be degraded due to the distorted signals by wind turbines. This degradation of radar systems includes ghost effects and doppler effects by a tower, nacelle, and turbine blades consisting of the wind turbine. In this paper, electromagnetic wave backscatterings from a offshore wind turbine are numerically simulated in terms of temporal radar cross section and radar cross section spectra, using a quasi-static approach based on physical optics and physical theory of diffraction. The simulations are carried out at 3.05 GHz for the seven yaw angles and four blade pitch angles. From the results, radar cross section values and doppler effect as turbine blades rotate are investigated.

Measurements on the Aerodynamic Noise Generated from a Tiltrotor (틸트로터에서 발생하는 공력소음의 측정에 관한 연구)

  • Hong, Suk-Ho;Park, Sung;Choi, Jong-Soo;Kim, Kyu-Young;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.158-163
    • /
    • 2005
  • In this paper the aeroacoustic characteristics of a tilt-rotor system is measured by using a sealed model tilt-rotor. With a microphone array system and the do-dopplerization algorithm, the location and the characteristics of rotor noise are successfully measured. The most of high frequency noise (4kHz) is found to be located at rotor blade tips, but the low frequency tonal noise is dominant on the middle of the rotor blades. The measured tonal noise characteristics are compared to the results of theoretical calculation. At 0.5m distance from the rotor plane, measured and calculated data are relatively well matched regardless of rotating speed and collective pitch angie for the azimuthal angles between $0^{\circ}\;and\;60^{\circ}$. However, the data on the azimuthal angles between $70^{\circ}\;and\;90^{\circ}$ are not quite comparable. In addition, the compared data for far-field case (1.5m) are quite different. This is probably due to the unsteady effect which if not included in the theoretical calculation.

  • PDF

ANALYSES ON FLOW FIELDS AND PERFORMANCE OF A CROSS-FLOW FAN WITH VARIOUS SETTING ANGLES OF A STABILIZER

  • Kim D. W.;Kim H. S.;Park S. K.;Kim Youn J
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.107-112
    • /
    • 2005
  • A cross-flow fan is generally used on the region within the low static pressure difference and the high flow rate. It relatively makes high dynamic pressure at low rotating speed because a working fluid passes through an impeller blade twice and blades have a forward curved shape. At off-design points, there are a rapid pressure head reduction, a noise increase and an unsteady flow. Those phenomena are remarkably influenced by the setting angle of a stabilizer. Therefore, it should be considered how the setting angle of a stabilizer affects on the performance and the flow fields of a cross-flow fan. It is also required to investigate the effect of the volumetric flow rate before occurring stall. Two-dimensional, unsteady governing equations are solved using a commercial code, STAR-CD, which uses FVM. PISO algorithm, sliding grid system and standard k - ε turbulence model are also adopted. Pressure and velocity profiles with various setting angles are graphically depicted. Furthermore, the meridional velocity profiles around the impeller are plotted with different flow rates for a given rotating speed.

Numerical Analysis on the Effect of Blade Sweep and Lean on the Performance of a Partial Admission Supersonic Turbine (스윕과 린을 적용한 부분흡입형 초음속 터빈의 성능 특성에 관한 수치적 연구)

  • Kwon, Tae-Un;Jeong, Soo-In;Cho, Jong-Jae;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.2
    • /
    • pp.36-43
    • /
    • 2011
  • The present study deals with numerical flow analysis to investigate the effect of sweep and lean on the performance characteristics of a partial admission supersonic turbine. The flow analysis was performed for three different angles. The angles of sweep and lean are $5^{\circ}$, $10^{\circ}$, $15^{\circ}$. The results of the flow analysis showed that the efficiency is improved as the sweep angle is increased. However, a sweep angle of $5^{\circ}$ was less effective in comparison with the baseline model. The total pressure loss was reduced as the lean angle is increased, but the total to static efficiency was decreased.

Computation of Noise from a Rotating Cylinder (회전하는 실린더에 의한 공력소음의 계산)

  • Jang, S.W.;Lee, S.;Kim, J.H.;Han, J.O.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.413-418
    • /
    • 2000
  • The noise sources from a rotating cylinder were identified to describe the blunt trailing edge noise. Firstly, LES formulation was applied to a non-orthogonal grid system and was tested with three-dimensional cross-flow over a cylinder with a yaw angle. The computed far-field noise showed peaks at Strouhal numbers ranging from 0.135 to 0.165 for the yawed cylinder flow with end-plates placed at both extremes under the yaw angle of $30^{\circ}$ and Reynolds number of $1.15{\times}10^4$. It was observed that the slantwise shedding at angles other than the cylinder yaw angle is intrinsic to inclined cylinder, with the result of shedding angles between $15^{\circ}$ and $31^{\circ}$. To study the trailing-edge wake thickness and unsteady lift-coefficient distribution in the span-wise direction of a rotating fan blade, the flows around rotating cylinder with 1,000 rpm were simulated and the far-field noise was exactly computed using the Ffowcs-Williams and Hawkings equation with quadrupole source term. The incoming velocities and stagnant zones were continuously distributed along the cylinder, and their changes made the Strouhal sheddings to occur at different phases even at almost same Strouhal number.

  • PDF

Performance Characteristics of a Cross-Flow Fan with Various Impeller Outlet Angles and Rearguiders (임펠러 출구각 및 리어가이더 형상 변화에 따른 횡류홴의 성능 특성)

  • Kim, H.S.;Kim, D.W.;Yoon, T.S.;Park, S.K.;Kim, Youn-J.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.851-856
    • /
    • 2003
  • A cross-flow fan consists of an impeller, a stabilizer and a rearguider. When it applied for an air conditioner, an evaporator should be added. It relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice and blades have a forward curved shape. Therefore, the performance of a cross-flow fan is influenced 25% by the impeller, 60% by the rearguider and the stabilizer, 15% by the heat exchanger. At the low flow rate, there are a rapid pressure head reduction, a noise increase and an unsteady flow against a stabilizer and a rearguider. Moreover, the reciprocal relation between the impeller and the flow passage is the important factor for performance improvement of the cross-flow tan because each parameter is independent. The performance characteristics in the cross-flow fan are graphically depicted with various impeller outlet angles and rearguiders.

  • PDF

Flow Characteristics around Archimedes Wind Turbine according to the Change of Angle of Attack (받음각 변화에 따른 아르키메데스 풍력발전 날개 주위의 유동장 변화)

  • Li, Qiang;Kim, Hyun Dong;Ji, Ho Seong;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.1
    • /
    • pp.28-33
    • /
    • 2013
  • This paper describes aerodynamic characteristics of an Archimedes spiral wind turbine with various angles of attack. The range of angles was controlled from $-30^{\circ}$ (clockwise) to $+30^{\circ}$ (clockwise). The rotating speed of wind turbine at the same angle of attack in both directions was different. The reason why the-maximum rotational speed was observed at $15^{\circ}$ in clockwise direction can be explained based on angular momentum conservation. Quantitative flow visualization around Archimedes wind turbine blade was carried out between $-15^{\circ}$ (clockwise) and $+15^{\circ}$ (counter clockwise) using high resolution PIV method. The relationship between drag force and rotating speeds was discussed. From these results, optimum design on yawing system of Archimedes spiral wind turbine may provide high efficiency on small wind power system.

Numerical Analysis on the Effect of Blade Sweep and Lean on the Performance of a Partial Admission Supersonic Turbine (스윕과 린을 적용한 부분흡입형 초음속 터빈의 성능 특성에 관한 수치적 연구)

  • Kwon, Ta-Eun;Jeong, Soo-In;Cho, Jong-Jae;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.786-792
    • /
    • 2010
  • The present study deals with numerical flow analysis to investigate the effect of sweep and lean on the performance characteristics of a partial admission supersonic turbine. The flow analysis was performed for three different angles. The angles of sweep and lean are $5^{\circ}$, $10^{\circ}$, $15^{\circ}$. The results of the flow analysis showed that the efficiency is improved as the sweep angle is increased. However, a sweep angle of $5^{\circ}$ was less effective in comparison with the baseline model. The total pressure loss was reduced as the lean angle is increased, but the total to static efficiency was decreased.

  • PDF

Hydraulic Performance of Francis Turbine with Various Discharge Angles (유출각 변화에 따른 프란시스 수차 성능해석)

  • Jeon, J.H.;Byeon, S.S.;Choi, Y.C.;Park, J.S.;Kim, Y.J.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.4
    • /
    • pp.10-14
    • /
    • 2013
  • In this study, we have numerically investigated the hydraulic efficiency with various values of discharge angle($11^{\circ}$, $12^{\circ}$, $14^{\circ}$, $15^{\circ}$, $17^{\circ}$, $18^{\circ}$, $20^{\circ}$) in the Francis turbine of hydropower generation under 15MW with fixed values of head range of 151m and flow rate($10.97m^3/s$). We also conducted the numerical analysis with constant inlet angle in the Francis turbine using the commercial code, ANSYS CFX. Hydraulic characteristics for different values of the runner blade angle are investigated. The results showed that the change of discharge angles significantly influenced on the performance of the turbine hydraulic efficiency.

Tailings Behavior and Performance of the Tailings Return Unit of the Head-feed Combine(II) -Theoretical and Experimental Analysis of Tailing Behavior- (자탈형(自脫型) 콤바인 환원장치(還元裝置)의 환원물(還元物) 유동현상(流動現象)과 환원성능(還元性能) 개선(改善)에 관한 연구(硏究)(II) -환원물(還元物) 유동(流動)의 이론해석(理論解析)과 실험분석(實驗分析)-)

  • Cho, Y.K.;Chung, C.J.;Choi, K.H.;Park, P.K.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.2
    • /
    • pp.133-141
    • /
    • 1991
  • This study was undertaken to investigate the structural and configurational characteristics of the tailings return-unit in the commercially available head-feed combines and to study the aero-dynamical behavior of the tailings in the units. The mathematical model of the motion of tailings in the thrower casing was developed and the simulated trajectories for different type of units was analyzed to compare with the measured ones. The air-stream velocity profile in various locations along the tailings returning duct was measured to find the effect of configurational characteristics and blade tip speed. The results of the study are summerized as follows. 1. The ejecting angle, which is the angle between the direction of the particle velocity ejecting from the blade and the horizontal axis, was found to be about $66^{\circ}$ in both the simulation and experiment. The angle was much greater than the setting angle of actual duct of the combines studied, which were $48{\sim}56^{\circ}$. By comparison of these results, it was suggested to change duct setting angle so as to reduce the frictional force, between the duct wall and tailings, by reducing the difference between the ejecting and setting angles. 2. The velocity of the air stream in the duct was in general higher in the upper bound of the duct compared to the lower and decreased as the stream went toward the end of duct. The comparison of the tailings units among the combines studied showed a superior performance with the tapered duct having small diameter in the outlet and with greater number of thrower blade.

  • PDF