부채널을 이용한 충돌 쌍 공격은 부채널 신호를 통해 동일한 비밀 중간 값을 확인하고, 이를 이용하여 암호 알고리즘의 비밀정보를 복원한다. CHES 2011에서 Clavier 등은 Blacklist를 활용하여 기존보다 적은 수의 평문으로 충돌 쌍 공격을 수행하였다. 하지만 Blacklist를 활용한 구체적인 방법 또는 수행 알고리즘에 대한 언급이 없고 단지 사용된 평문의 수치만 소개하였다. 따라서 본 논문에서는 효율적인 충돌 쌍 공격을 위한 구체적인 방법을 소개한다. 우선 Blacklist를 활용할 수 있도록 기본적인 개념 및 용어, 표기법을 정의했으며, 이를 바탕으로 여러 가지 기법들을 제안했다. 또한 설계 시 공격 성능에 가장 큰 영향을 주는 사항에 대해 중점적으로 기술하였고, 분석을 통해 좀 더 효율적인 알고리즘을 설계함으로써 성능 향상을 꾀하였다.
전자상거래가 활성화되고 사회 전반의 거의 모든 활동이 인터넷으로 가능해지면서 무한이 증가하는 정보의 가치를 경쟁력 있게 만들기 위해 기업에 종사하는 사람들이나 전자상거래의 구매자들은 강력한 검색도구를 필요로 한다. 최근 검색엔진의 성능이 급격히 좋아지고 있지만, 사용자가 완벽히 만족할 수 있는 결과를 제시하지는 못하는 것이 현실이다. 본 연구에서는 같은 서버의 같은 디렉토리 상에 존재하는 중복되는 결과로 내용의 정확성에 비해 검색 갯수가 많은 경우와 연결이 안되는 웹 페이지를 다량 포함한 경우에 대해 검색 결과를 공통 분모를 찾아 결과를 축약하는 방법과 블랙리스트를 구축하는 방법을 제안한다.
Journal of information and communication convergence engineering
/
제9권4호
/
pp.353-357
/
2011
U.S. Obama government is submit a motion to consider cyber attacks on State as a war. 7.7DDoS attack in Korea in 2009 and 3.4 DDoS attacks 2011, the country can be considered about cyber attacks. China hackers access a third country, bypassing South Korea IP by hacking the e-commerce sites with fake account, that incident was damaging finance. In this paper, for WiBro service, DDoS attacks, hackers, security incidents and vulnerabilities to the analysis. From hacker's attack, WiBro service's prognostic relevance by analyzing symptoms and attacks, in real time, Divide Red, Orange, Yellow, Green belonging to the risk rating. For hackers to create a blacklist, to defend against attacks in real-time air-conditioning system is the study of security. WiBro networks for incident tracking and detection after the packets through the national incident response should contribute to the development of technology.
International Journal of Computer Science & Network Security
/
제22권8호
/
pp.275-279
/
2022
The growth of technology nowadays has made many things easy for humans. These things are from everyday small task to more complex tasks. Such growth also comes with the illegal activities that are perform by using technology. These illegal activities can simple as displaying annoying message to big frauds. The easiest way for the attacker to perform such activities is to convenience user to click on the malicious link. It has been a great concern since a decay to classify URLs as malicious or benign. The blacklist has been used initially for that purpose and is it being used nowadays. It is efficient but has a drawback to update blacklist automatically. So, this method is replace by classification of URLs based on machine learning algorithms. In this paper we have use four machine learning classification algorithms to classify URLs as malicious or benign. These algorithms are support vector machine, random forest, n-nearest neighbor, and decision tree. The dataset that is used in this research has 36694 instances. A comparison of precision accuracy and recall values are shown for dataset with and without preprocessing.
금융회사가 전자금융 서비스를 제공하기 시작하면서 전자금융 서비스는 다양화 되었고 전자금융 사용은 지속적으로 증가하고 있다. 이에 금융회사는 안전한 전자금융서비스를 제공하기 위하여 금융 보안정책을 적용하고 있으나 전자금융 사고는 계속해서 지능화되고 증가하고 있는 상황이다. 금융감독기관은 최근 인터넷 전문은행 등장과 핀테크 활성화와 더불어 비대면 실명확인 제도 신설 및 전자금융 거래를 통한 자금이체 시 공인인증서 또는 일회용비밀번호 의무사용 폐지 등의 규정을 개선하여 이용자의 편리함을 추구하는 동시에 금융회사에게는 이상금융거래 탐지 시스템 고도화 및 개선을 통한 불법이체 사고 방지를 권고하고 있다. 본 논문에서는 금융회사 제반 상황에 적합한 블랙리스트기반 자동화 탐지 기법을 제안하고 블랙리스트 정보를 레벨링하여 보안레벨에 따른 블랙리스트기반과 통계모델을 연동한 실시간 이상금융거래 탐지 기법을 제안하며, 기존 전자금융 사고유형 분석을 통한 특징적 패턴에 따른 실시간 이상금융거래 탐지기법의 대응 모델을 제안하고자 한다.
전통적인 악성코드 탐지 기술은 알려진 악성코드를 수집하고 특성을 분석한 후, 분석된 정보를 블랙리스트로 생성하고, 이를 기반으로 시스템 내의 프로그램들을 검사하여 악성코드 여부를 판별한다. 그러나 이러한 접근 방법은 알려진 악성코드의 탐지에는 효과적일 수 있으나 알려지지 않았거나 기존 악성코드의 변종에 대해서는 효과적으로 대응하기 어렵다. 또한, 시스템 내의 모든 프로그램을 감시하기 때문에 시스템의 성능을 저하시킬 수 있다. 이러한 문제점들을 해결하기 위하여 악성코드의 주요 행위를 분석하고 대응하기 위한 다양한 방안들이 제안되고 있다. 랜섬웨어는 사용자의 파일에 접근하여 암호화한다. 이러한 동작특성을 이용하여 시스템의 사용자 파일에 접근하는 정상적인 프로그램들을 화이트리스트로 관리하고 파일 접근을 제어하는 방안이 제안되었다. 그러나 화이트리스트에 등록된 정상 프로그램에 DLL(Dynamic-Link Library) 삽입 공격을 수행하여 악성 행위를 수행하게 할 수 있다는 문제점이 지적되었다. 본 논문에서는 화이트리스트 기반 접근통제 기술이 이러한 DLL 삽입 공격에 효과적으로 대응할 수 있는 방안을 제안한다.
조직이 위기 상황에서 무엇을 어떻게 말할 것인가는 조직이 지속적으로 사회적 인정과 정당성을 획득하기 위해 매우 중요하다. 본 논문에서는 문화예술계 블랙리스트 사례 중 2015년부터 2019년까지 불거진 한국문화예술위원회(이하, 예술위) 팝업씨어터 사건 관련 위기 커뮤니케이션 사례에 주목하고, 이 사태에 대해 예술위가 이해관계자들과 소통한 방식에 대해 살펴본다. 특히 Hearit(2006)의 위기 커뮤니케이션 연구모델을 분석틀로 적용하여 예술위가 팝업씨어터 사건과 이후 발표한 세 건의 사과문을 분석한다. 이를 통해 예술위의 위기 커뮤니케이션 방안이 세 번의 사과를 통해 어떻게 변화했는지 탐색하였다. 연구 결과 팝업씨어터 사건은 사회문화적 질서를 위반한 사건이며, 그 결과 조직의 역량과 사회적 사명의 측면에서 사회적 정당성을 위협하는 위기가 발생하였다는 것을 확인하였다. 또한 Hearit의 분석틀을 통해 시기별로 발표된 사과문의 실질적인 변화를 탐색하였으며 사과의 핵심이 단순히 무조건적 사과나 유감 표명이 아닌 위기의 본질을 파악하여 준비되어야 한다는 것을 확인하였다.
2008년도 SecruityFocus 자료에 따르면 마이크로소프트사의 인터넷 익스플로러를 통한 클라이언트 측 공격(client-side attack)이 50%이상 증가하였다. 본 논문에서는 가상머신 환경에서 능동적으로 웹 페이지를 방문하여 행위 기반(즉, 상태변경 기반)으로 악성 URL을 분석하여 탐지하고, 블랙리스트 기반으로 악성 URL을 필터링하는 시스템을 구현하였다. 이를 위해, 우선 크롤링 시스템을 구축하여 대상 URL을 효율적으로 수집하였다. 특정 서버에서 구동되는 악성 URL 탐지 시스템은, 수집한 웹페이지를 직접 방문하여 머신의 상태 변경을 관찰 분석하고 악성 여부를 판단한 후, 악성 URL에 대한 블랙리스트를 생성 관리한다. 웹 클라이언트 머신에서 구동되는 악성 URL 필터링 시스템은 블랙리스트 기반으로 악성 URL을 필터링한다. 또한, URL의 분석 시에 메시지 박스를 자동으로 처리함으로써, 성능을 향상시켰다. 실험 결과, 게임 사이트가 다른 사이트에 비해 악성비율이 약 3배 많았으며, 파일생성 및 레지스트리 키 변경 공격이 많음을 확인할 수 있었다.
4차 산업혁명으로 인해 빅데이터가 구축됨에 따라 개인 맞춤형 서비스가 급증했다. 이로 인해 온라인 서비스에서 수집하는 개인정보의 양이 늘어났으며, 사용자들의 개인정보 유출 및 프라이버시 침해 우려가 높아졌다. 온라인 서비스 제공자들은 이용자들의 프라이버시 침해 우려를 해소하기 위해 개인정보 처리방침을 제공하고 있으나, 개인정보 처리방침은 길이가 길고 복잡하여 이용자가 직접 위험 항목을 파악하기 어려운 문제로 인해 오남용되는 경우가 많다. 따라서 자동으로 개인정보 처리방침이 안전한지 여부를 검사할 수 있는 방법이 필요하다. 그러나 종래의 블랙리스트 및 기계학습 기반의 개인정보 처리방침 안전성 검증 기법은 확장이 어렵거나 접근성이 낮은 문제가 있다. 본 논문에서는 문제를 해결하기위해 생성형 인공지능인 GPT-3.5 API를 이용한 개인정보 처리방침 안전성 검증 기법을 제안한다. 새로운 환경에서도 분류 작업을 수행할 수 있고, 전문 지식이 없는 일반인이 쉽게 개인정보 처리방침을 검사할 수 있다는 가능성을 보인다. 실험에서는 블랙리스트 기반 개인정보 처리방침과 GPT 기반 개인정보 처리방침이 안전한 문장과 안전하지 않은 문장의 분류를 얼마나 정확하게 하는지와 분류에 소요된 시간을 측정했다. 실험 결과에 따르면, 제안하는 기법은 종래의 블랙리스트 기반 문장 안전성 검증 기법보다 평균적으로 10.34% 높은 정확도를 보였다.
PC가 악성코드에 감염되면 C&C서버와 통신하며 공격자의 명령에 따라 내부 네트워크에 확산, 정보획득 등의 과정을 거쳐 최종적인 악성행위를 하게 된다. 기업은 외부로부터의 공격을 사전에 차단하는데 중점을 두고 있으나 APT공격을 목적으로 한 악성코드는 어떤 형대로든 내부로 유입된다. 이때 피해의 확산을 방지하기 위하여 악성코드에 감염되어 C&C서버와 통신을 시도하는 PC를 찾아내는 내부 모니터링이 필요하다. 본 논문에서 수많은 패킷들의 목적지IP가 블랙리스트 IP인지 여부를 빠르고 효과적으로 대조하기 위한 블룸필터를 이용한 목적지 IP 모니터링 방안을 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.