• Title/Summary/Keyword: Black charcoal

Search Result 37, Processing Time 0.024 seconds

A case study of verifying a suicide by carbon monoxide intoxication committed by burning an ignition charcoal briquette (착화탄 연소에 의한 일산화탄소 중독사에서 자살입증에 관한 사례연구)

  • Sung, Tae-myung;Jo, Ju-ik;Ahn, Phil-sang
    • Analytical Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.398-408
    • /
    • 2015
  • Carbon monoxide (CO) intoxication, arising from CO from an ignited charcoal briquette (ICB), is a popular means of committing suicide in Korea. Most CO intoxications are related to suicide attempts; however, the possibility of a homicide disguised as a suicide cannot be ruled out. Therefore, forensic investigation of the deceased and the crime scene is crucial to confirm that the deceased committed suicide. Detection of the components of an ICB on the objects suspected of being contacted by the deceased, such as the hands, nostrils, and doorknobs, is essential for linking the crime scene to the victim in the case of suicides by ignited ICBs. The traces from an ICB were analyzed by investigating the morphological characteristics and obtaining elemental compositions. The ICBs were completely different from blackened wood, as detected by discriminant analysis with the elements of carbon and oxygen. We analyzed one case of CO intoxication to demonstrate an excellent procedure for verifying whether a suicide occurred with an ICB. We employed SEM-EDX for the analysis of an ICB, microscope-FT/IR and pyrolysis-GC/MS for a partly burnt resin-type substance, GC/MS for diphenhydramine (a sleeping drug), and GC/TCD for the CO-Hb level. We detected traces of an ICB on the hands, nostrils, and doorknobs, which were all discriminated into an ICB group. Detection of ICB traces from the nostrils could indicate that the deceased started the fire themselves to commit suicide. The partially burnt black material was analyzed as an acrylronitrilestyrene polymer, which is normally used to make bags for carrying or wrapping and could be assumed to have been used to transport the ICB. Diphenhydramine, a sleeping drug, was detected at a level of 2.3 mg/L in the blood, which was lower than that in fatal cases (8-31 mg/L; mean 16 mg/L). A CO-Hb level of 79% was found in the blood, which means that the cause of death was CO intoxication. The steps shown here could represent an ideal method for reaching a verdict of suicide by CO intoxication produced by burning an ICB in a sealed room or a car.

Eco-physiological Responses of Two Populus deltoides Clones to Ozone

  • Yun, Sung-Chul;Kim, Pan-Ki;Hur, Jae-Seoun;Lee, Jae-Cheon;Park, Eun-Woo
    • The Korean Journal of Ecology
    • /
    • v.24 no.2
    • /
    • pp.93-100
    • /
    • 2001
  • One-year-old cottonwood (Populus deltoides Bartr.) clones, which were classified as sensitive or tolerant, were exposed to 150 n1/1 ozone (O$_3$) over 8 days for 8 hours each day under glass chamber conditions with natural sunlight. The leaves of the sensitive clone had black stipple and bifacial necrosis after $O_3$ treatment. Photosynthesis and stomatal conductance were measured before, during, and after the $O_3$ treatment. The photosynthetic rates due to $O_3$ treatment were decreased 51 percent and 34 percent on the sensitive and tolerant clone, respectively. The stomatal conductance of the sensitive clone was more than 40 percent higher than that of the tolerant clone regardless of the $O_3$ treatment. As light intensity increased, the $O_3$ effect on photosynthesis was clear. Compared to the previous growth chamber studies, our natural light exposure system was able to maintain a stable photosynthetic responses of the control treatment throughout the fumigation period. In addition, changes in assimilation versus intercellular $CO_2$ concentration (A/C curves) showed that $O_3$ decreased the slope and asymptote of the curves for the sensitive clone. This indicates that $O_3$ decreases the biochemical capacity of photosynthesis on the sensitive clone. Chlorophyll contents and fluorescence of the two clones were analyzed to examine the $O_3$ effects on photosystem 11, but $O_3$ did not impact these variables on either clone. Although the tolerant clone did not show any foliar injury, we could not find any ecophysiological defensive responses to $O_3$ treated. Stomatal conductance of the tolerant clone was originally much lower than that of the sensitive one. Thus, the mechanisms of the tolerant clone in this system are to narrowly open stomata and efficiently maintain photosynthesis with a more durable biochemical apparatus of photosynthesis under $O_3$ stress. The sensitive clone has higher photosynthetic capacity and more efficient light reaction activity than the tolerant one under charcoal filtered condition, but is not as resilient under stress.

  • PDF

Break Point Chlorination (BPC) Characteristics for Heavy Metals Removal in Plating Wastewater Treatment (염소산화공정을 이용한 도금폐수의 중금속 제거 특성)

  • Jung, Byung-Gil;Lee, Seung-Won;Yun, Kwon-Gam;Jung, Jin-Hee;Kim, Jeong-Woong;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.29 no.11
    • /
    • pp.1055-1064
    • /
    • 2020
  • In this research, heavy metals and T-P removal characteristics of plated wastewater are derived using BPC(Break Point Chlorination) process. AA sedimentation pond outflow(Influence) was evaluated for the removal efficiency of heavy metal(Ni) and T-P at a reaction time of 25 minutes by NaOCl input volume(9, 11, 13 and 15 mL). In the case, the higher the NaOCl input volumes, the higher the ORP values were maintained and the higher the removal efficiency tended to be. On the other hand, T-P was judged to have a low relationship between the ORP value and the removal efficiency. In addition, the efficiency of removal heavy metals and T-P in the plated wastewater by injecting 10 mL, 15 mL, 20 mL and 25 mL NaOCl, increased as the amount of NaOCl injected increased, the amount of NaOH input for pH increased. It was found that suspended solid in effluence also increased. It was also observed that the color of the plating wastewater changed from yellowish green to green to charcoal gray to black as the amount of NaOCl injected increased. Treatment characteristics of the reaction time, the longer the reaction time with the substance to be treated after the input of NaOCl, the more the heavy metal removal efficiency tended to increase. Through XRF analysis of the sludge, the constituents in the sludge such as NaCNO, CNCl, Na3PO4, CrO4, 2Na2CrO4 and 2NaNO3 will be analyzed in detail, and the mechanisms of the reaction between the plated wastewater and the complex compound will be elucidated.

Geochemistry of tourmalines in the Ilgwang Cu-W breccia-pipe deposit, Southeastern Gyeongsang Basin (경상남도 일광의 각력파이프형 구리(Cu)광상에서 산출되는 전기석의 지구화학)

  • 양경희;장주연
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.259-270
    • /
    • 2002
  • A small granodiorite-quartz monzonitic stock containing sericitic and propylitic alteration assemblages hosts a Cu-W breccia-pipe deposit in the southeastern Cyeongsang basin. The mineralized breccia-pipe contains angular to subangular brecciated fragments of granitic rocks showing clast-supported textures. An assemblage of quartz, tourmalines, sulfide minerals (mainly chalcopyrite, arsenopyrite and pyrrhotite) and calcite was precipitated as a hydrothermal cement between the brecciated fragments. A tourmaline aureole surrounds the breccia pipe. Extensive tourmalinization of the granitic rocks near and within the pipe and no tourmalinization in the sedimentary and volcanic rocks. The tourmalines are marked by Fe-rich, black charcoal-like schorl (80 mol% schorl relative) nearer the schorl-dravite solid solution. The chemical changes in the hydrothermal fluid are reflected by variations in compositional Boning from cores to rims. They generally contain cores with low values of Fe/(Fe+Mg) and high values of Na/(Na+ca) relative to rims. This is because of an increase Fe and Ca contents toward rims. The main trend of these variations is a combination of the exchange vectors Ca(Fe, Mg) $(NaAl)_{- }$ $_1$ and $Fe^{3}^{+}$ $Al_{[-10]}$ $_1$ It is thought that boiling causes the loss of $H_2$ into the vapor phase resulting in the oxidation of Fe in the aqueous phase. pH of the melt would be one of important controlling factors for the tourmaline stability. The tourmalines could be precipitated when the system evolved to the acidic hydrothermal regime as most hydrothermal brines and acidic gases exsolved from the magma. The Ilgwang tourmaline crystallization is products of hypogene orthomagmatic hydrothermal processes that were strongly pipe-controlled.

Efficiency of Poultry Manure Biochar for Stabilization of Metals in Contaminated Soil (계분 바이오차를 이용한 토양 중금속 안정화 효율 평가)

  • Lim, Jung Eun;Lee, Sang Soo;Ok, Yong Sik
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.1
    • /
    • pp.39-50
    • /
    • 2015
  • Stabilization of heavy metals such as Pb, Cd, Zn, and Cu was evaluated in contaminated soil treated with poultry manure (PM) as well as its biochars pyrolyzed at $300^{\circ}C$ (PBC300) and $700^{\circ}C$ (PBC700) at the application rates of 2.5, 5.0, and 10.0 wt% along with the control, prior to 21-days incubation. After incubation, soil pH was increased from 6.94 (control) to 7.51, 7.24, and 7.88 in soils treated with PM 10 wt%, PBC300 10 wt%, and PBC700 10 wt% treatments, respectively, mainly due to alkalinity of treatments. In the soil treated with PM, the concentrations of the toxicity characteristic leaching procedure (TCLP)-extractable Pb, Cd, Zn, and Cu were increased by up to 408, 77, 24, and 955%, respectively, compared to the control. These increases may possibly be associated with an increased dissolved organic carbon concentration by the PM addition. However, in the soil treated with PBC700, TCLP-extractable Pb, Cd, Zn, and Cu concentrations were reduced by up to 23, 38, 52, and 36%, respectively, compared to the control. Thermodynamic modelling using the visual MINTEQ was done to predict the precipitations of $Pb(OH)_2$, $Cu(OH)_2$ and P-containing minerals, such as chloropyromorphite [$Pb_5(PO_4)_3Cl$] and hydroxypyromorphite [$Pb_5(PO_4)_3OH$], in the PBC700 10 wt% treated soil. The SEM-elemental dot mapping analysis further confirmed the presence of Pb-phosphate species via dot mapping of PBC700 treated soil. These results indicate that the reduction of Pb concentration in the PBC700 treated soil is related to the formations of chloropyromorphite and hydroxypyromorphite which have very low solubility.

Characterization of Burcucumber Biochar and its Potential as an Adsorbent for Veterinary Antibiotics in Water (가시박 유래 바이오차의 특성 및 항생물질 흡착제로서의 활용가능성 평가)

  • Lim, Jung Eun;Kim, Hae Won;Jeong, Se Hee;Lee, Sang Soo;Yang, Jae E;Kim, Kye Hoon;Ok, Yong Sik
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.1
    • /
    • pp.65-72
    • /
    • 2014
  • Biochar (BC) from biomass pyrolysis is a carbonaceous material that has been used to remove various contaminants in the environment. The eliminatory action for burcucumber (Sicyos angulatus L.) as an invasive plant is being consistently carried out because of its harmfulness and ecosystem disturbance. In this study, burcucumber biomass was converted into BCs at different pyrolysis temperatures of 300 and $700^{\circ}C$ under a limited oxygen condition. Produced BCs were characterized and investigated to ensure its efficiency on antibiotics' removal in water. The adsorption experiment was performed using two different types of antibiotics, tetracycline (TC) and sulfamethazine (SMZ). For the BC pyrolyzed at a high temperature ($700^{\circ}C$), the values of pH, electrical conductivity, and the contents of ash and carbon increased whereas the yield, mobile matter, molar ratios of H/C and O/C, and functional groups decreased. Results showed that the efficiency of BCs on antibiotics' removal increased as pyrolysis temperature increased from 300 to $700^{\circ}C$ (38 to 99% for TC and 6 to 35% for SMZ). The reaction of ${\pi}-{\pi}$ EDA (electron-donor-acceptor) might be involved in antibiotics' adsorption to BCs. BC has potential to be a superior antibiotics' adsorbent with environmental benefit by recycling of waste/invasive biomass.

Interpretation Method of Eco-Cultural Resources from the Perspective of Landscape Ecology in Jeju Olle Trail (제주 올레길 생태문화자원 경관생태학적 해석기법 연구)

  • Hur, Myung-Jin;Han, Bong-Ho;Park, Seok-Cheol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.2
    • /
    • pp.128-140
    • /
    • 2021
  • This study applied the theory of Landscape Ecology to representative resources of Jeju Olle-gil, which is a representative subject of walking tourism, to identify ecological characteristics and to establish a technique for landscape ecological analysis of Olle-gil resources. Jeju Olle Trail type based on the biotope type, major land use, vegetation status around Olle Trail and roads were divided into 12 types. Based on the type of ecological tourism resource classification, the Jeju Olle-gil walking tourism resource classification was divided into seven types of natural resources and seven types of humanities resources, and each resource was characterized by Geotope, Biotope, and Anthropopope, just like the landscape ecology system. Geotope resources are strong in landscape characteristics such as coast and beach, rocks, bedrocks, waterfalls, geology and Jusangjeolli Cliff, Oreum and craters, water resources, and landscape viewpoints. The Biotope resources showed strong ecological characteristics due to large tree and protected tree, Gotjawal, forest road and vegetation communities, biological habitat, vegetation landscape view point. Antropotope include Culture of Jeju Haenyeo and traditional culture, potting and lighthouses, experience facilities, temples and churches, military and beacon facilities, other historical and cultural facilities, and cultural landscape views. Jeju Olle Trail The representative resources for each type of Jeju Olle Trail are coastal, Oreum, Gotjawal, field and Stonewall Fencing farming land, Jeju Village and Stone wall of Jeju. In order to learn about the components and various functions of the resources representing the Olle Trail's ecological culture, the landscape ecological technique was interpreted. Looking at the ecological and cultural characteristics of coastal, the coast includes black basalt rocks, coastal vegetation, coastal grasslands, coastal rock vegetation, winter migratory birds and Jeju haenyeo. Oreum is a unique volcanic topography, which includes circular and oval mountain bodies, oreum vegetation, crater wetlands, the origin and legend of the name of Oreum, the legend of the name of Oreum, the culture of grazing horses, the use of military purposes, the object of folk belief, and the view from the summit. Gotjawal features rocky bumps, unique microclimate formation, Gotjawal vegetation, geographical names, the culture of charcoal being baked in the past, and bizarre shapes of trees and vines. Field walls include the structure and shape of field walls, field cultivation crops, field wall habitats, Jeju agricultural culture, and field walls. The village includes a stone wall and roof structure built from basalt, a pavilion at the entrance of the village, a yard and garden inside the house, a view of the lives of local people, and an alleyway view. These resources have slowly changed with the long lives of humans, and are now unique to Jeju Island. By providing contents specialized for each type of Olle Trail, tourists who walk on Olle will be able to experience the Olle Trail in depth as they learn the story of the resources, and will be able to increase the sustainable use and satisfaction of Jeju Olle Trail users.