• Title/Summary/Keyword: Black carbon (BC) particle

Search Result 15, Processing Time 0.023 seconds

Comparison of Diesel Exhaust Particle Concentration between Large Above-Underground Parking Lots (수도권 일부 대형상가 지상주차장 및 지하주차장의 공기중 디젤엔진배출 입자상물질의 공기중 농도 비교)

  • Kim, Boowook;Song, Dong-Woo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.4
    • /
    • pp.323-332
    • /
    • 2013
  • Objectives: This study was conducted in order to investigate the diesel exhaust particle(DEP) concentrations in the thirteen parking lots of large shopping complex. Methods: The real-time black carbon(BC) concentration was determined using an Aethalometer, and elemental/organic carbon concentration was determined according to the method of the National Institute for Occupational Safety and Health(NIOSH) 5040. The particle number concentration(NC), lung deposited surface area concentration(LDSA) and geometric mean diameter(GMD) were determined using a DiSCmini aerosol monitor. Results: The average concentration of BC, EC, OC, NC, LDSA and GMD were $19.1{\mu}g/m^3$, $12.6{\mu}g/m^3$, $51.5{\mu}g/m^3$, $94,000particles/cm^{-3}$, $298{\mu}m^2/cm^{-3}$ and 57 nm in all parking lots, respectively, approximately 3-fold higher than those found in the urban outdoor. The average concentration of BC were $21.3{\mu}g/m^3$ in underground parking lots, 3-fold higher than above parking lots. Conclusions: Therefore, the parking lots at the large shopping complex can be considered a potentially dangerous environment with a high concentration of DEP nanoparticles.

Diurnal Size Distributions of Black Carbon by Comparison of Optical Particulate Measurements - Part I (광학 입자 측정기 비교 측정에 의한 입경별 일평균 블랙카본 분석 - Part I)

  • Park, Da-Jeong;Lee, Kwang-Yul;Park, Kihong;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Optical particle sizer (OPS), optical particle counter (OPC), and aethalomter were deployed to measure the particle number concentrations from 0.3 to $10.0{\mu}m$ and black carbon (BC) concentrations. Comparisons of particle number concentrations measured by OPS and OPC were conducted to evaluate the performance of the each optical instrument at the Gwangju sampling site ($35.23^{\circ}N$, $126.84^{\circ}E$) for 14 days from Dec. 27 in 2014. Although a good correlation ($r^2=0.99$) between the OPS and OPC was observed for both the particle number and volume concentrations, different relationships by BC concentrations can be associated with the intensities by different light scattering angles. In addition, based on diurnal patterns of size distributions in 24 hr running correlation coefficient determination, BC concentrations were highly related to the particles less than $0.3{\mu}m$ observed in the morning traffic hour.

Physico-Chemical Characterization of Black Carbon Emitted from Coal-fired Power Plant, Charcoal Kiln and Diesel Vehicle (석탄화력 발전소, 숯가마, 디젤차량에서 배출되는 Black Carbon의 물리화학적 특성화 연구)

  • Saixiyaletu, Saixiyaletu;Kim, Jin Young;Shim, Shang-Gyoo;Jin, Hyoun Cher;Kim, Jong Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.2
    • /
    • pp.152-162
    • /
    • 2013
  • The physico-chemical characteristics and nanostructure of the aerosol samples from a coal-fired power plant, a charcoal kiln and diesel vehicles were investigated with focusing on black carbon (BC). Aerosols from the coal-fired power plant were mostly comprised of mineral ash spheres which are heterogeneously mixed. The main components of the aerosols from coal-fired power plant were calcium compounds, iron oxide, alumino-silicate without BC. The typical combustion-generated BC which shows the shape of bunch of grapes with 20~50 nm particles which were detected in aerosol particles from diesel vehicles. The nanostructure of each BC particle shows the shape of concentric circles which is comprised of closely-packed graphene layers. Aerosols from charcoal kiln were likely condensed organic carbon generated from the low-temperature combustion process.

Black Carbon Pollution Level at a Roadside of Seoul in Spring (봄철 서울 도로변의 검댕 오염 특성)

  • Lee, Seung-Bok;Bae, Gwi-Nam;Park, Su-Mi;Jung, Sang-Geun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.4
    • /
    • pp.466-477
    • /
    • 2007
  • To understand particle pollution phenomena caused by vehicles, black carbon (BC) concentrations were continuously monitored using an aethalometer at a roadside in Seoul during the period of May 79 to 25, 2005. The BC concentration was highly fluctuated for a short duration, responding to the traffic situation on the road. The lowest BC concentration was observed between 2 and 5 a.m. The local highest BC concentrations were observed during the periods of both morning and evening rush hours. Change in traffic volume accounts for the trend of hourly averaged BC concentrations from the late evening to the morning. Particularly, the slower increase of BC concentration on Sunday seems to respond directly the lower traffic volume in the morning rush hours. From the comparison with a previous work, it is concluded that the BC concentration around midday hours might be dependent on the distance from a road.

Characteristics of Black Carbon Particles in Ambient Air Using a Single Particle Soot Photometer (SP2) in May 2013, Jeju, Korea (SP2 (Single Particle Soot Photometer)를 이용한 제주도 5월 Black Carbon 특성)

  • Oh, Jun;Park, Jinsoo;Lee, Sanguk;Ahn, Joonyoung;Choi, Jinsoo;Lee, Sangdeok;Lee, Yonghwan;Kim, Hyunjae;Hong, Youdeog;Hong, Jihyung;Kim, Jeongho;Kim, SangWoo;Lee, Gang-Woong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.3
    • /
    • pp.255-268
    • /
    • 2015
  • Single particle soot photometer (SP2) is an advanced instrument capable of real-time measurement of concentration, coating thickness, and size distribution of individual BC particle using laser-induced incandescence. So far, there have been insufficient studies examining the real-time characteristics of BC in Korea. In this study, we examined temporal variations in BC concentration and mass size distribution of BC in volume equivalence diameter at a background site of Aewol, Jeju in May. Average concentration and mass median diameter (MMD) of BC particles measured during the study period (06~ 16 May 2013) were $0.69{\pm}0.48{\mu}g/m^3$ and $196{\pm}17nm$, respectively. The BC concentration measured in Aewol was very similar to that observed in the spring of 2012 in Baengnyeong island, and showed diurnal profiles similar to those in other background areas. MMD of BC ranged from 172 to 222 nm. It was found that the mass size distribution of BC varied depending on the location (ground-based), season, types of air masses, and altitude (aircraft-based).

The Characteristics of Black Carbon of Seoul (서울의 블랙카본 특성 연구)

  • Park, Jongsung;Song, Inho;Kim, Hyunwoong;Lim, Hyungbae;Park, Seungmyung;Shin, Suna;Shin, Hyejoung;Lee, Sangbo;Kim, Jeongho
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.2
    • /
    • pp.113-128
    • /
    • 2019
  • The concentration and coating thickness of black carbon (BC) were measured along with fine dust in the fall of 2018, at the Seoul Metropolitan Area Intensive Monitoring Station (SIMS). In fall, the concentration of $PM_{10}$ and $PM_{2.5}$ was $23{\pm}12.6{\mu}g/m^3$ and $12{\pm}5.8{\mu}g/m^3$, respectively, lower than that in other seasons. The BC level, measured using an Aethalometer, was $0.73{\pm}0.43{\mu}g/m^3$, while the levels of elemental carbon (EC) and refractory-BC (rBC), measured by semi-continuous carbon analyzer (SOCEC) and single particle soot photometer (SP2), were $0.34{\pm}0.18{\mu}g/m^3$ and $0.32{\pm}0.18{\mu}g/m^3$, respectively. As such, the concentration level differed according to the measurement method, but its time-series distribution and diurnal variation showed the same trends. The BC concentration at SIMS was primarily affected by automobiles with higher levels of BC during morning and evening commuting times due to increased traffic congestion. rBC, measured by SP2, had a peak concentration and coating thickness of 84 nm and 43 nm, respectively. Notably, the coating thickness had an inverse relationship with particle size.

Visualization of Artificially Deposited Submicron-sized Aerosol Particles on the Surfaces of Leaves and Needles in Trees

  • Yamane, Kenichi;Nakaba, Satoshi;Yamaguchi, Masahiro;Kuroda, Katsushi;Sano, Yuzou;Lenggoro, I. Wuled;Izuta, Takeshi;Funada, Ryo
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.4
    • /
    • pp.275-280
    • /
    • 2012
  • To understand the effect of aerosols on the growth and physiological conditions of trees in forests, it is important to know the state of aerosols that are deposited on the surface of the leaves or needles. In this study, we developed methods of visualization of submicron-sized aerosols that were artificially deposited from the gas-phase or liquid phase onto tree leaves or needles in trees. Firstly, we used field-emission scanning electron microscopy (FE-SEM) to observe black carbon (BC) particles that were artificially sprayed onto the leaves or needles. The distribution of BC particles deposited on the leaves and needles were distinguished based on the size and morphological features of the particles. The distribution and agglomerates size of BC particles differed between two spraying methods of BC particles employed. Secondly, we tried to visualize gold (Au) particles that were artificially sprayed onto the leaves using energy dispersive X-ray spectrometry (EDX) coupled to FE-SEM. We detected the Au particles based on the characteristic X-ray spectrum, which was secondarily generated from the Au particles. In contrast to the case of BC particles, the Au particles did not form agglomerates and were uniformly distributed on the leaf surfaces. The present results show that our methods provide useful information of adsorption and/or behavior of fine particles at the submicron level on the surface of the leaves.

Inter-comparison of Two Aethalometers for Aerosol Black Carbon Measurements (대기 에어로졸 검댕입자 측정을 위한 두 aethalometer의 상호비교)

  • Jung, Jung-Hoon;Park, Seung-Shik;Yoon, Kwan-Hoon;Cho, Sung-Yong;Kim, Seung-Jai
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.2
    • /
    • pp.201-208
    • /
    • 2011
  • Recently, a real-time, pocket-sized aethalometer (microAeth$^{(R)}$ model AE51) has been developed by Magee Scientific Inc. for measuring the concentration of black carbon in the atmosphere. In this study, two aethalometers, models AE-16 and AE-51, which measure the optical absorption of carbon particles at infrared 880 nm, were operated at time interval of 5-min between January 9 and February 10, 2010 at an urban site of Gwangju, to compare the accuracy of black carbon (BC) concentrations reported from the AE-51 model and to investigate reasonable sampling time of filter media in the AE-51. The air samples in the AE-51 and AE-16 models are collected on T60 (Teflon coated glass fiber) filter media (filter spot area: 0.07 $cm^2$) and quartz fiber roll-tape filter (filter spot area: 1.67 $cm^2$), respectively. Real-time measurement results indicate that when the filters were clean, the AE-51 BC was greater than or similar to the AE-16 BC data. However as the filter spots become darker, the AE-16 BC concentrations were higher than the AE-51 BC data and the difference in the BC concentrations from two AE models becomes gradually increased. Relative error in the AE-51 and AE-16 BC concentrations showed significance difference depending on used time of the filter in the AE-51 model, weather pattern, levels of air pollution, etc, ranging from 11.5% (used time of the filter in AE-51: 1,595 min) to 52.5% (used time of the filter in AE-51: 2,085 min). When considering the used time of one filter ticket in the AE-51 model and difference (or relative error %) between AE-16 and AE-51 BC concentrations, it is recommended that the standard sampling time per one filter ticket within the AE-51 model be less than approximately 24 hr (1,440 min) under the normal weather conditions except for severe haze and mist events.

Exposure Assessment of Dust, Ultra Fine Dust(Particulate Matter 2.5, PM2.5) and Black Carbon among Aircraft Cabin Cleaners (항공기 기내 청소노동자의 분진, 초미세먼지(PM2.5) 및 블랙카본 노출수준 평가)

  • Hyunhee Park;Sedong Kim;Sungho Kim;Seung-Hyun Park
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.2
    • /
    • pp.171-187
    • /
    • 2023
  • Objectives: Aircraft cabin cleaning work is characterized by being performed within a limited time in a narrow and enclosed space. The objective of this study was to evaluate the exposure levels to dust, ultra fine dust(PM2.5) and black carbon(BC) among aircraft cabin cleaners. Methods: Active personal air sampling for respirable dust(n=73) and BC(n=47) was conducted during quick transit cleaning(cabin general and vacuum-specific) and seat cover replacement and total dust and PM2.5 were area-air-sampled as well. Also, size distribution of particle was identified with the cleaning workers targeted. Dusts were collected with PVC filters using gravimetric analysis. The concentration of PM2.5 and the particle size distribution were measured with real-time direct reading portable equipment using light scattering analysis. The concentration of BC was measured by aethalometer(filter-based real-time light absorption analysis instrument). Results: The geometric mean of respirable dust was the highest at vacuum cleaning as 74.4 ㎍/m3, following by replacing seat covers as 49.3 ㎍/m3 and cabin general cleaning as 47.8 ㎍/m3 . The arithmetic mean of PM2.5 was 4.83 ~ 9.89 ㎍/m3 inside the cabin, and 28.5~44.5 ㎍/m3 outside the cabin(from bus and outdoor waiting space). From size distribution, PM2.5/PM10 ratio was 0.54 at quick transit cleaning and 0.41 at replacing seat covers. The average concentration of BC was 2~7 ㎍/m3, showing a high correlation with the PM2.5 concentration. Conclusions: The hazards concentration levels of aircraft cabin cleaners were very similar to those of roadside outdoor workers. As the main source of pollution is estimated to be diesel vehicles operating at airports, and it is necessary to replace older vehicles, strengthen pollutant emission control regulations, and introduce electric vehicles. In addition, it is necessary to provide as part of airport-inftastructure a stable standby waiting space for aircraft cabin cleaners and introduce a systematic safety and health management system for all workers in the aviation industry.

Vehicle-related Fine Particulate Air Pollution in Seoul, Korea

  • Bae, Gwi-Nam;Lee, Seung-Bok;Park, Su-Mi
    • Asian Journal of Atmospheric Environment
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Vehicle exhaust is a dominant source of air pollutants in urban areas. Since people are easily exposed to vehicle exhaust particles while driving a car and/or traveling via public transportation, air pollution near traffic has been extensively studied in developed countries. In this paper, investigations on vehicle-related fine particulate air pollution at roadsides and on roads in Seoul, Korea were reviewed to understand air pollution near traffic. Comparison of $PM_{10}$ concentrations in Seoul showed that roadside air is more contaminated than urban air, implying that exposure levels near vehicular emissions are more critical to sensitive persons. Concentrations of ultrafine particles and BC (black carbon) at roadsides of Seoul fluctuate highly for short durations, responding to traffic situations. Diurnal variations of ultrafine particles and BC concentrations at roadsides seem to be affected by traffic volume, mixing layer height, and wind speed. Concentrations of ultrafine particles and BC decrease as distance from the road increases due to dilution during transport. On-road air pollution seems to be more severe than roadside air pollution in Seoul. Since nearby traffic air pollution has not been well understood in Seoul, further studies including various vehicular air pollutants and representative locations are needed.