• Title/Summary/Keyword: Bjerkandera fumosa

Search Result 5, Processing Time 0.023 seconds

Production of Mn-Dependent Peroxidase from Bjerkandera fumosa and Its Enzyme Characterization

  • Jarosz-Wilkolazka, Anna;Luterek, Jolanta;Malarczyk, Elzbieta;Leonowicz, Andrzej;Cho, Hee-Yeon;Shin, Soo-Jeong;Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.85-95
    • /
    • 2007
  • Manganese dependent peroxidase (MnP) is the most ubiquitous enzyme produced by white-rot fungi, MnP is known to be involved in lignin degradation, biobleaching and oxidation of hazardous organopollutants. Bjerkandera fumosa is a nitrogen-unregulated white-rot fungus, which produces high amounts of MnP in the excess of N-nutrients due to increased biomass yield. The objective of this study was to optimize the MnP production in N-sufficient cultures by varying different physiological factors such as Mn concentration, culture pH, and incubation temperature. The growth of fungus was optimal in pH 4.5 at $30^{\circ}C$, $N_2$-unregulated white-rot fungus produces high amounts of MnP in the excess N-nutrients. The fungus produced the highest level of MnP (up to $1000U/{\ell}$) with $0.25g/{\ell}$ asparagine and $1g/{\ell}$ $NH_4Cl$ as N source at 1.5 mM $MnCl_2$ concentration, pH value of 4.5 at $30^{\circ}C$. Purification of MnP revealed the existence of two isoforms: MnPl and MnP2. The molecular masses of the purified MnPl and MnP2 were in the same range of 42~45 kDa. These isoforms of B. fumosa strictly require Mn to oxidize phenolic substrates. Concerned to kinetic constants of B. fumosa MnPs, B. fumosa has similar Km value and Vmax compared to the other white-rot fungi.

Sequence Validation for the Identification of the White-Rot Fungi Bjerkandera in Public Sequence Databases

  • Jung, Paul Eunil;Fong, Jonathan J.;Park, Myung Soo;Oh, Seung-Yoon;Kim, Changmu;Lim, Young Woon
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1301-1307
    • /
    • 2014
  • White-rot fungi of the genus Bjerkandera are cosmopolitan and have shown potential for industrial application and bioremediation. When distinguishing morphological characters are no longer present (e.g., cultures or dried specimen fragments), characterizing true sequences of Bjerkandera is crucial for accurate identification and application of the species. To build a framework for molecular identification of Bjerkandera, we carefully identified specimens of B. adusta and B. fumosa from Korea based on morphological characters, followed by sequencing the internal transcribed spacer region and 28S nuclear ribosomal large subunit. The phylogenetic analysis of Korean Bjerkandera specimens showed clear genetic differentiation between the two species. Using this phylogeny as a framework, we examined the identification accuracy of sequences available in GenBank. Analyses revealed that many Bjerkandera sequences in the database are either misidentified or unidentified. This study provides robust reference sequences for sequence-based identification of Bjerkandera, and further demonstrates the presence and dangers of incorrect sequences in GenBank.

Decolorization of Blue-Stain by Dual Culture of Blue Staining and Basidial Fungi

  • Pashenova, Natalia;Lee, Jong-Kyu;Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.2 s.130
    • /
    • pp.65-71
    • /
    • 2005
  • This study was performed to understand the interaction between Ophiostomataceae and basidiomycetes fungi during cultures, and whether the basidiomycetes fungi inhibit the growth and decolorize dark pigments of blue staining fungi. The conjoint cultivation was studied on 2% malt extract agar. The ability of basidial cultures to decolorize dark pigments of ophiostomatoid fungi was the main characteristics estimated during this study. More than half of basidial cultures were characterized by deadlock interaction with blue staining fungi. In the dual cultures, where basidial partners were presented by Agaricus bisporus(64), Laetiporus sulphureus(L01/89), Trametes versicolor(09) and unknown fungus(02), antagonism was found at the phase of primary contact of colonies. Replacement interaction resulted usually in decreasing dark colour of substrate was observed for 11 basidial cultures that were belonging mainly to white-rot fungi. Among them Abortiporus biennis(123), Antrodiella hoehnelii(S28/91), Bjerkandera fumosa (137), and Gleophyllum odoratum(124) were characterized by the absence of deadlock-phase: they began to grow over dark colonies of their partners just after primary contact. Basidiomycetes did not affect strongly the pigments of Ceratocystis spp. and Leptographium sibirica isolates, but completely decolorized colonies of Ophiostoma ips and to a smaller degree Ophiostoma minus. Antrodiella hoehnelii(S28/91), Bjerkandera fumosa(137), Gleophyllum odoratum(124) and Trametes versicolor(B18/91) cultures were found to be the most active in decreasing dark color of blue staining fungi colonies. The cultures were recommended for further development as agents of biopulping of wood chips and bio-control of blue stain in woods.

Preliminary Approaches On Decolorization of Blue-Stained Wood Chips By Basidial Fungi

  • Pashenova, N.V.;Hop, Pham Thi Bich;Cho, Nam-Seok
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2003.11a
    • /
    • pp.9-16
    • /
    • 2003
  • Interaction between wood-destroying basidiomycetes and blue stain fungi were studied during conjoint cultivation on 2% malt extract agar. The ability of basidial cultures to decolourise dark pigments of ophiostomatoid fungi was the main characteristics estimated during this investigation. Antrodiella hoehnelii(S28/91), Bjerkandera fumosa(137), Gleophyllum odoratum(124), Trametes versicolor (B18/91) cultures were found to be the most active in decreasing dark colour of blue stain fungi colonies. The cultures were recommended for further development as agents of biopulping and control of blue stain fungi in wood chips.

  • PDF

Phylogenetic relationships of genera Grifola on the basis of ITS region sequences (rDNA의 ITS 부위 염기서열 분석에 의한 잎새버섯(Grifola)속 균주의 유전적인 유연관계 분석)

  • Lee, Chan-Jung;Jhune, Chang-Sung;Cheong, Jong-Chun;Kong, Won-Sik;Suh, Jang-Sun
    • Journal of Mushroom
    • /
    • v.10 no.2
    • /
    • pp.93-99
    • /
    • 2012
  • This study was carried to identify a correct species and asses genetic diversity within the same species of Grifola spp. preserved in Division of applied Microbiology. Contaminated isolates showed different growth rates, morphology and color of hyphae. We have reconstructed the phylogenetic tree of a select group of Grifola spp. using nucleotide sequences of the internal transcribed spacer region(ITS) region. The phylogenetic tree was constructed by using the neighbor-joining method. PELF primers of 20-mer were used to assess genetic diversity of preserved isolates. Sequence analysis showed that four strains were identified completely different nomenclature. According to the analysis of ITS sequences, the genus Grifola clustered into one group, most of which correlated with species-groups identified by RAPD method. Eight isolates included strain GM01 showed high similarity with Grifola frondosa. All isolates were collected in the Japan(GM01, GM02, GM03) was identified as Grifola frondosa and isolates of the China(GM05, GM06, GM08) was identified as Bjerkandera fumosa, Grifola frondosa and Dichomitus squalens, respectively. RAPD analysis of genetic polymorphisms of genus Grifola showed a very different band patterns on the isolat. As the result of RAPD and ITS region sequences analysis for preserved isolates, it seems likely that 4 isolates of Grifola spp. may be need to reclassify or eliminate from preserved catalogue.