• Title/Summary/Keyword: Bituminous coal ash

Search Result 76, Processing Time 0.024 seconds

Optimization of Coal Ash Water Treatment Conditions to Suppress Concrete Pop-out Based on Coal Ash Containing Expansion Components (팽창성분이 혼입된 석탄재 기반 콘크리트의 팝아웃 발생 억제를 위한 석탄재 수처리 조건 최적화)

  • Jae-Jin Hong;Joo-Han Kang;Mi-Na Kim;Woo-Seong Choi;Myung-Jun Oh;Seong-Yun Kim
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.226-231
    • /
    • 2024
  • Coal ash has been used as a sand replacement in the construction industry. Due to the use of bituminous coal as a result of anthracite depletion, and quicklime as an air purifier in the desulfurization process, pop-out defects have recently occurred in concrete using coal ash, severely limiting the recycling of coal ash into concrete. In this study, the components that cause the pop-out problem of the coal ash filled concrete were identified and a pretreatment method to fully expand the expansive components in advance was proposed as a solution to this problem. By treating water twice for 10 min, allowing the CaO mixed in the coal ash to fully expand, the problems of pop-out and reduced compressive strength of the concrete were overcome. The cost and time efficient water treatment method proposed in this study is expected to promote the recycling of coal ash into concrete.

Cross-section micrography of burning pulverized coal particles (연소중 미분탄의 단면관측)

  • 한재현;최상민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.717-725
    • /
    • 1989
  • An experimental investigation on the combustion behavior of pulverized coal particles was performed using the cross-section micrography techniques while sample coal particles were collected in-situ from the flow reactor. The coal particles were representative of pulverized bituminous coal undergoing a raped pyrolysis and combustion, however, quenched at the time when the particles were deposited onto a sample plate. The internal structure of coal was observed to change as deposited. Upon injection into a flow reactor, bituminous coal particles showed many holes which represented internal pore formation during the pyrolysis. The relative portion of the remaining matrix of coal was decreasing as the residence time progressed. This direct observation of cross-section of burning particles enabled better understanding of the coal combustion behavior.

The Strength and Durability of Compacted Coal Ash with Proper Mixing Ratio of Fly Ash to Bottom Ash (비회와 저회의 적정 혼합비로 다짐한 석탄회의 강도와 내구성)

  • Chun, Byung Sik;Lee, Eun Soo;Koh, Yong Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.207-213
    • /
    • 1992
  • In this study, the strength and durability of compacted coal ash with proper mixing ratio of fly ash to bottom ash, such as 5:5 or 6:4, are examined for use of highway embankment and subgrade materials. Right after compaction, the strength of bituminous mixed coal ash is greater than that of anthracite mixed coal ash. The distinguished increase of strength with curing time is observed only in Ho-nam mixed coal ash that contains a lot of free lime, and the strength increase with curing time are not seen or little in the others. The durability in sinking test is good also in Ho-nam mixed coal ash, but satisfactory by adding 2% cement in the others. And it is seen that the effects of the strength increase with adding cement are greater in coal ash with proper mixing ratio than in fly ash or bottom ash respectly.

  • PDF

Investigation on the Leaching Potential of Water-Soluble Metals from Bottom Ashes in Coal-fired Power Plants (화력발전소 바닥재의 수용성 금속이온 용출가능성 조사)

  • Seo, Hyosik;Koh, Dong-Chan;Choi, Hanna
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.1
    • /
    • pp.39-49
    • /
    • 2022
  • Bottom ash generated from thermal power plants is mainly disposed in landfills, from which metals may be leached by infiltrating water. To evaluate the effect of metals in leachate on soil and groundwater, we characterized bottom ash generated from burning cokes, bituminous coal, the mixture of bituminous coal and wood pellets, and charcoal powder. The bottom ash of charcoal powder had a relatively large particle size, and its wood texture was well-preserved from SEM observation. The bottom ash of charcoal powder and wood pellets had relatively high K concentration from total element analysis. The eluates of the bottom ash samples had appreciable concentrations of Ca, Al, Fe, SO4, and NO3, but they were not a significant throughout the batch test. Therefore, it is considered that there is low possibility of soil and groundwater contamination due to leaching of metal ions and anions from these bottom ash in landfills. To estimate the trend of various trace elements, long-term monitoring and additional analysis need to be performed while considering the site conditions, because they readily adsorb on soil and aquifer substances.

Influence of Fly Ash Application on Content of Heavy Metals in the Soil -III. Content Change in the Rice and Soybean by the Application Rate (석탄회(石炭灰) 시용(施用)이 토양중(土壤中) 중금속(重金屬) 함량(含量)에 미치는 영향(影響) -III. 쌀과 콩중(中)의 중금속(重金屬) 함량변화(含量變化))

  • Kim, Bok-Young;Jung, Goo-Bok;Lim, Sun-Uk;Park, Jong-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.3
    • /
    • pp.220-225
    • /
    • 1994
  • This study was conducted to investigate the influence of treatment of fly ash on heavy metal contents in the grain. Rice was cultivated on the two types of paddy field, clay loam and sandy loam soil, with 0, 4, 8, 12t/10a of anthracite fly ash and bituminous coal fly ash, respectively. And soybean was cultivated on the same types of upland field with those of 0, 3, 6, 9t/10a, respectively. Also. rice and soybean were cultivated the same types of paddy and upland field with those ashes of 0, 12ton/10a and 0, 9ton/10a, yearly for three years. At the harvest time, the heavy metal contents in rice and soybean were Investigated. The results were summarized as follows : 1. Amount of application. 1) The contents of Cd in brown rice increased in the clay loam soil. Cr and Ni increased sandy loam soil with the application of anthracite fly ash. 2) The contents of Zn in rice increased in the sandy loam soil with the application of bituminous coal fly ash. 3) The contents of Cu in soybean increased with the application of anthracite and bituminous coal fly ash, but Zn, Pb, Cr and Ni increased only with the bituminous. 2. Successive application. 1) The contents of Cd in brown rice increased in the clay and sandy loam soil, however Cu, Zn, Ni, Cr and Fe increased only in sandy loam soil with the anthracite fly ash. 2) The contents of Cr in soybean were increased in the clay and sandy loam soil, but Cu, Fe increased only sandy loam soil with anthracite fly ash. 3) The contents of Cd, Zn, and Cr in brown rice increased in the clay and sandy loam soil, but those of Cu, Mn increased only in the sandy loam soil with application of bituminous. 4) The contents of Cd, Pb, and Cr in soybean increased in the sandy loam soil with the application of bituminous coal fly ash.

  • PDF

Effect of Fly Ash on the Yield of Chinese Cabbage and Chemical Properties of Soil (석탄회(石炭灰)(Fly ash) 시용(施用)이 배추의 수량(收量) 및 토양특성(土壤特性)에 미치는 영향(影響))

  • Kim, Bok-Jin;Back, Jun-Ho;Kim, Yeung-Seok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.2
    • /
    • pp.161-167
    • /
    • 1997
  • The effect of Bituminous and Anthracite coal ash(fly ash) on the performance of Chinese cabbage on an acid soil was studied through a pot experiment. The levels of application of the materials tested were five, 10 and 15% of dry soil weight. Regardless of the kind of fly ash, the application of it, tended to increase the yield of Chinese cabbage by 13 to 24% in fresh weight. Difference in application levels did not result in the difference in increasing the yield of Chinese cabbage. The application of fly ash tended to lower the all of the mineral nutrient contents in the Chinese cabbage, excepting boron. Boron content tended to increase along with the application of fly ash. Bituminous ash raised the pH of soil and increased available P, exchangeable Ca and soluble boron in the soil remarkably. Anthracite ash, on the other hand, did not increase the contents of other components in the soil, than soluble born.

  • PDF

Hydrothermal Reactivity of Various Classified Fly Ashes by Electrostatic Precipitator (전기집진장치로부터 단별채취한 플라이 애쉬의 수열반응성)

  • ;Estuo Sakai;Masaki Daimon
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.8
    • /
    • pp.811-816
    • /
    • 2000
  • This paper discussed hydrothermal reactivity of Ca(OH)2 and classified bituminous fly ashes which were collected at an electrostatic precipitator in coal fired power plant at 181$^{\circ}C$. The major products of hydrothermal reaction were tobermorite and hydrogrossularite because bituminous fly ashes contained Al2O3 content greater than 20 wt%. As increasing amount of Al2O3 content greater than 20 wt%. As increasing amount of Al2O3 in glass phases, formation of hydrogrossularite increased. Formation rate of crystalline tobermorite increased with content of finer particles, higher glass content and more Al2O3 in glass phases. There was a positive correlation between residue on 45${\mu}{\textrm}{m}$ sieve and hydrothermal reactivity of fly ash up to 3 hours. The hydrothermal reactivity of fly ash at 181$^{\circ}C$ for 12 hours was more affected by fineness than by glass content of fly ash.

  • PDF

A Study on the Engineering Characteristics of Power Plant Coal Ash (화력발전소 부산물인 석탄회의 공학적 특성에 관한 연구)

  • Kuk, Kilkeun;Kim, Hyeyang;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.5
    • /
    • pp.25-34
    • /
    • 2010
  • In this study characteristics for reclaimed ash was studied to enlarge the usage of reclaimed ash which is reaching to 72 million ton producted from whole thermal power plants in South Korea. Fly ash and bottom ash are reclaimed separately at some of thermal power plants. However, typically bottom ash and fly ash are mixed when they are buried at most of the thermal power plant, as a result the engineering characteristics of ponded ash are not investigated properly. In order to investigate the engineering characteristics of the ponded ash, laboratory tests were performed with ponded ash and fly ash from youngheung and samcheonpo thermal power plants. Specific gravity, unit weight, and grain size analysis test were fulfilled to evaluate the physical characteristics and triaxial permeability test, direct shear test, unconfined compressive strength test, compaction test were performed to evaluate the mechanical characteristics. And also engineering characteristics of coal ash from anthracite and Bituminous thermal power plants were compared and studied respectively. As a result of the study, it was confirmed that using coal ash from Bituminous thermal power plants can be effective in the place where lightweight materials are required and using coal ash from anthracite thermal power plants can be effective as backfill material which require higher permeability. Finally, it was confirmed that fly ash from youngheung thermal power plants which has the lowest permeability among the tested material is suitable for a field requiring impermeable material.

Group Separation of Water-soluble Organic Carbon Fractions in Ash Samples from a Coal Combustion Boiler

  • Park, Seung-Shik;Jeong, Jae-Uk;Cho, Sung-Yong
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.1
    • /
    • pp.67-72
    • /
    • 2012
  • The chemical characterization of water-soluble organic carbon in ash emitted from a coal combustion boiler has not been reported yet. A total of 5 ash samples were collected from the outlet of an electrostatic precipitator in a commercial 500 MW coal-fired power plant, with their chemical characteristics investigated. XAD7HP resin was used to quantify the hydrophilic and hydrophobic water-soluble organic carbons (WSOC), which are the fractions of WSOC that penetrate and remain on the resin column, respectively. Calibration results indicate that the hydrophilic fraction includes aliphatic dicarboxylic acids and carbonyls (<4 carbons), amines and saccharides, while the hydrophobic fraction includes aliphatic dicarboxylic acids (>4-5 carbons), phenols, aromatic acids, cyclic acid and humic acid. The average mass of the WSOC in the ash samples was found to depend on the bituminous coal type being burned, and ranged from 163 to 259 ${\mu}g$ C/g of ash, which corresponds to 59-96 mg C of WSOC/kg of coal combusted. The WSOC mass accounted for 0.02-0.03 wt% of the used ash sample mass. Based on the flow rate of flue gas produced from the combustion of the blended coals in the 500 MW coal combustion boiler, it was estimated that the WSOC particles were emitted to the atmosphere at flow rates of 4.6-7.2 g C/hr. The results also indicated that the hydrophilic WSOC fraction in the coal burned accounted for 64-82% of the total WSOC, which was 2-4 times greater than the mass of the hydrophobic WSOC fraction.

Content of Heavy Metals in Coal Fly Ash from the Samcheonpo and the Seocheon Power Plant (삼천포와 서천 화력발전소에서 발생하는 석탄회중의 중금속 함량에 관한 연구)

  • Yoon, Chung-Han;Oh, Keun-Chang;Kim, Yong-Woong;Shin, Bang-Sup
    • Economic and Environmental Geology
    • /
    • v.28 no.2
    • /
    • pp.147-154
    • /
    • 1995
  • Coal fly ashes collected from the Samcheonpo and the Seocheon Power Plants were analyzed for major and minor components and heavy metals such as As, Cd, Co, Cr, Cu, Ga, Hg, Mo, Ni, Pb, Sb, V and Zn in order to suggest basic data to apply coal fly ash as fertilizer or soil ameliorator. The specific gravity of the samples was less than 2.0, and amounts of organic matter range from 5.0% to 12.3%. The identified minerals by XRD were mainly quartz, mullite and pyrite in anthracite coal, and mainly quartz and mullite in bituminous coal. Generally, the contents of heavy metal elements analyzed were lower less than those of soil, though higher in some samples. Element couples of some elements( e.g., As-Mo, Zn ; Mo-As, Sb, V, Zn ; Sb-Zn ) show positive correlations with each other, but the high correlations of toxic elements such as As, Pb, Cd and Hg indicate to give attention to apply coal fly ash as fertilizer or soil ameliorator.

  • PDF