• Title/Summary/Keyword: Bit Plane Coding

Search Result 53, Processing Time 0.033 seconds

A VLSI Efficient Design and Implementation of Bit Plane Coding Algorithm for JPEG2000 (JPEG2000을 위한 Bit Plane Coding Algorithm의 효율적인 VLSI 설계 및 구현)

  • Yang, Sang-Hoon;Min, Byung-Jun;Park, Dong-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.146-150
    • /
    • 2009
  • Nowdays needs the new still image compression standard. JPEG2000 has been developed. JPEG2000 divide DWT and EBCOT. EBCOT is consisted of Bit Plane Coding and ARithmetic Coding algorithm. In this paper, we proposed BPC algorithm that is efficient context-based generation. Proposed BPC Algorithm forecasted coding pass using SigStage, column, mpass value. BPC designed using Verilog HDL. H/W implemenates using Xillinx FPGA technology.

Lossless Coding of Audio Spectral Coefficients Using Selective Bit-Plane Coding (선택적 비트 플레인 부호화를 이용한 오디오 주파수 계수의 무손실 부호화 기술)

  • Yoo, Seung-Kwan;Park, Ho-Chong;Oh, Seoung-Jun;Ahn, Chang-Beom;Sim, Dong-Gyu;Beak, Seung-Kwon;Kang, Kyoung-Ok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.18-25
    • /
    • 2008
  • In this paper, new lossless coding method of spectral coefficients for audio codec is proposed. Conventional lossless coder uses Huffman coding utilizing the statistical characteristics of spectral coefficients, but does not provide the high coding efficiency due to its simple structure. To solve this limitation, new lossless coding scheme with better performance is proposed that consists of bit-plane transform and run-length coding. In the proposed scheme, the spectral coefficients are first transformed by bit-plane into 1-D bit-stream with better correlative properties, which is then coded intorun-length and is finally Huffman coded. In addition, the coding performance is further increased by applying the proposed bit-plane coding selectively to each group, after the entire frequency is divided into 3 groups. The performance of proposed coding scheme is measured in terms of theoretical number of bits based on the entropy, and shows at most 6% enhancement compared to that of conventional lossless coder used in AAC audio codec.

Improved FGS Coding System Based on Sign-bit Reduction in Embedded Bit-plane Coding

  • Seo, Kwang-Deok;Davies, Robert J.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.2 no.3
    • /
    • pp.129-137
    • /
    • 2007
  • MPEG-4 FGS is one of scalable video coding schemes specified In ISO/IEC 14496-2 Amendment 2, and particularly standardized as a scheme for providing fine granular quality and temporal scalabilities. In this paper, we propose a sign-bit reduction technique in embedded bit-plane coding to enhance the coding efficiency of MPEG-4 FGS system. The general structure of the FGS system for the proposed scheme is based on the standard MPEG-4 FGS system. The proposed FGS enhancement-layer encoder takes as input the difference between the original DCT coefficient and the decision level of the quantizer instead of the difference between the original DCT coefficient and its reconstruction level. By this approach, the sign information of the enhancement-layer DCT coefficients can be the same as that of the base-layer ones at the same frequency index in DCT domain. Thus, overhead bits required for coding a lot of sign information of the enhancement-layer DCT coefficients in embedded bit-plane coding can be removed from the generated bitstream. It is shown by simulations that the proposed FGS coding system provides better coding performance, compared to the MPEG-4 FGS system in terms of compression efficiency.

  • PDF

Development of A Lossless Video Coding System Using Motion Compensation

  • Naoki Ono;Satoshi Ishbashi;Naoki Kobayashi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1998.06b
    • /
    • pp.177-182
    • /
    • 1998
  • In this paper, we propose a lossless motion video coding method using motion compensation. For realtime coding and transmission, we developed a lossless video codec based on the proposed method. It was confirmed the codec functions normally in an experiment involving coding and transmitting through an actual ATM network. Furthermore, we proposed a lossless coding method with bit-plane expansion under a constant bitrate. Two approaches, a closed bit-plane approach and a merged bit-plane approach, are considered and characteristics of their compression efficiency are estimated. Simulation results show that the proposed method is suitable for lossless video coding with bitrate control.

  • PDF

Wavelet Transform Image Compression Using Shuffling and Correlation (Shuffling 및 상관도를 이용한 웨이블릿 영상 압축)

  • 김승종;민병석;정제창
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.609-612
    • /
    • 1999
  • In this paper, we propose wavelet transform image compression method such that an image is decomposed into multiresolutions using biorthogonal wavelet transform with linear phase response property and decomposed subbands are classified by maximum classification gain. The classified data is quantized by allocating bits in accordance with classified class informations within subbands through arbitrary set bit allocation algorithm. And then, quantized data in each subband are entropy coded. The proposed coding method is that the quantized data perform shuffling before entropy coding in order to remove sign bit plane. And the context is assigned by maximum correlation direction for bit plane coding.

  • PDF

A study on the bit-plane coding improvement of EBCOT algorithm (EBCOT 알고리즘의 bit-plane 부호화 개선에 대한 연구)

  • 이호석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.281-283
    • /
    • 2000
  • 본 논문은 EBCOT 알고리즘의 소개와 개선 방법을 제안한다. EBCOT 알고리즘은 웨이블릿 변환과 블록기반 bit-plane 부호화 방법을 활용한 알고리즘이다. EBCOT에서 사용하는 bit-plane 부호화 방법을 블록기반 fractional bit-plane 방법이라고 한다. 이 방법은 bit-plane 전체를 한번에 부호화하는 것이 아니라 블록으로 나누어 부호화를 수행하고 또한 하나의 bit-plane에 대하여서도 4번의 pass를 거치면서 bit의 context에 따라서 부호화를 수행한다. EBCOT는 웨이블릿 변환에 의하여 resolution 스케일러빌리티를 지원하고 fractional bit-plane 부호화에 의하여 SNR 스케일러빌리티를 지원하며 블록기반 부호화에 의하여 ROI에 대한 random 접근 기능을 지원한다. 그리고 EBCOT는 부호화가 완료된 다음에 bit reduction 과정을 수행한다. 이러한 특징들은 이전의 EZW나 SPIHT 방법에 비하여 장점들이라고 할 수 있다. 그러나 bit-plane 부호화를 수행하는 과정에서 효율을 개선할 수 있으며 본 논문은 이에 대한 방법을 제안한다.

  • PDF

Progressive Image Coding using Wavelet Transform (웨이블릿 변환을 이용한 순차적 영상 부호화)

  • Kim, Yong-Yeon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.1
    • /
    • pp.33-40
    • /
    • 2014
  • In this paper we propose new image coding using wavelet transform. The new method constructs hierarchical bit plane and progressively transports each bit plane. The Proposed algorithm not only supports multi-resolution, dividing original image into special band and various resolution using Antonini's wavelet basis function but also reduces blocking effects that come into JPEG. In encoding time this algorithm considers each band characters and priority of transport order, and applies to fast search of image.

A Study on the Block Truncation Coding Using the Bit-plane Reduction (비트평면 감축을 이용한 블록 절단부호화에 관한 연구)

  • 이형호;박래홍
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.5
    • /
    • pp.833-840
    • /
    • 1987
  • A new Block Truncation Coding(BTC) technique reducing the bit-plane and using differential pulse code modulation (DPCM) is proposed and compared with the conventional BTC methods. A new technique decides whether the subblock can be approximated to be uniform or not. If the subblock can be approximated to be uniform(merge mode), we transmit only the gray-level informantion. It not (split mode), we transmity both the bit-plane and the gray-level information. DPCM method is proposed to the encoding of gray-level information when the subblock can be approximated to be uniform. Also modified quantization method is presented to the encoding of gray-level information when the subblock is not uniform. This technique shows the results of coding 256 level images at the average data rate of about 0.75 bits/pel.

  • PDF

Image Coding Using Bit-Planes of Wavelet Coefficients (웨이블렛 변환 계수의 비트 플레인을 이용한 영상부호화)

  • 김영로;홍원기;고성제
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.4
    • /
    • pp.714-725
    • /
    • 1997
  • This paper proposes an image compression method using the wavelet transform and bit-plane coding of wavelet coefficients. The hierarchical application of wavelet transform to an image produces one low resoluation(the subband with lowest frequency) image and several high frequency subbands. In the proposed method, the low resolution image is compressed by a lossless method at 8 bits per each coefficient. However, the high frequency subbands are decomposed into 8 bit planes. With an adptive block coding method, the decomposed bit planes are effectively compressed using localized edge information in each bit plane. In addition, the propsoed method can control bit rates by selectively eliminating lessimportant subbands of low significant bit planes. Experimental results show that the proposed scheme has better performance in the peak signal to noise ratio (PSNR) and compression rate than conventional image coding methods using the wavelet transform and vector quantization.

  • PDF

Pyramidal Image Coding using Edge Information (Edge 정보에 근거한 피라미드 영상부호화)

  • 김해성;김남철;심영석
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1987.04a
    • /
    • pp.27-30
    • /
    • 1987
  • Some modification of laplacian pyramidal coding have been done and tested for a test image, From our studies, its apperar that 3-D redictor which exploits inter and intra plane redundancy simultaneously somewhat imporves the image quality, We also have tried to reduce the bit rate by only sending zeroth plane image values that correstpond to estimated dege points which can be obtained from the first plane For both cases the feedback of quantization errof in the previous plane has been in the reconstruction of each plane. Subjective and SNR tests show the better performance of the studied methods oner the conventional one.

  • PDF