• 제목/요약/키워드: Birjand

검색결과 66건 처리시간 0.02초

Spatial Analysis of Breast Cancer Incidence in Iran

  • Mahdavifar, Neda;Pakzad, Reza;Ghoncheh, Mahshid;Pakzad, Iraj;Moudi, Asieh;Salehiniya, Hamid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권sup3호
    • /
    • pp.59-64
    • /
    • 2016
  • Breast cancer (BC) is the most common cancer in females (27% of the total) and the main cause of death (16%) due to cancer in women in developed and developing countries. Variations in its incidence rate among geographical areas are due to various contributing factors. Since there have been a lack of studies on this topic in our country, the present spatial analysis of breast cancer incidence in Iran in 2009 was conducted using data from the national cancer registry system. The reported incidences of the disease were standardized according to the World Health Organization population and the direct method. Then data was inserted into the GIS software and finally, using the Hot Spot Analysis (Geties-Ord Gi), high-risk areas were drawn. Provinces with incidences 1.96 SD higher or lower than the national average were considered as hot spots or cold spots, at the significance level of 0.05%. In 2009, a total of 7,582 cases of BC occurred in Iran. The annual incidence was 33.2 per hundred thousand people. Our study showed that the highest incidence of BC in women occurred in the central provinces of the country, Tehran, Isfahan, Yazd, Markazi and Fars. The results of hot spots analysis showed that the distribution of high-risk BC was focused in central parts of Iran, especially Isfahan province (p <0.01). The other provinces were not significantly different from the national average. The higher incidence in central provinces may be due to greater exposure to carcinogens in urban areas, a Western lifestyle and high prevalence of other risk factors. Further epidemiological studies about the etiology and early detection of BC are essential.

Investigating Sexual Function and Affecting Factors in Women with Breast Cancer in Iran

  • Shandiz, Fatemeh Homaee;Karimi, Fatemeh Zahra;Rahimi, Nafiseh;Abdolahi, Mahboubeh;Anbaran, Zahra Khosravi;Ghasemi, Mina;Mazlom, Seyed Reza;Kheirabadi, Aghileh Nasaghchi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권7호
    • /
    • pp.3583-3586
    • /
    • 2016
  • Background: Since the breast is strongly relevant to sexual desire, and physical and sexual attractiveness, the high prevalence of breast cancer (BC) in Iran and long-term survival of patients experiencing side effects means that measures to identify associated sexual problems are necessary. Therefore, this study was conducted to assess sexual function and affecting factors in women with BC. Materials and Methods: This cross-sectional study was performed on 94 women with BC, referred to Imam Reza (AS) Hospital, Mashhad, Iran, in 2014. The data were collected through demographic and clinical questionnaires and also a sexual function questionnaire and analyzed using SPSS version 16. Results: The total score of women's sexual function was about $24.3{\pm}4.41$. Of the total, 63 (71.3%) reported sexual dysfunction, for example reduced satisfaction or more pain. Age was the only significantly related factor. Conclusions: Breast cancer can adversely affect women's sexual function and decrease quality of life. Thus, taking measures to overcome women's sexual problems are necessary.

Application of random regression models for genetic analysis of 305-d milk yield over different lactations of Iranian Holsteins

  • Torshizi, Mahdi Elahi;Farhangfar, Homayoun;Mashhadi, Mojtaba Hosseinpour
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권10호
    • /
    • pp.1382-1387
    • /
    • 2017
  • Objective: During the last decade, genetic evaluation of dairy cows using longitudinal data (test day milk yield or 305-day milk yield) using random regression method has been officially adopted in several countries. The objectives of this study were to estimate covariance functions for genetic and permanent environmental effects and to obtain genetic parameters of 305-day milk yield over seven parities. Methods: Data including 60,279 total 305-day milk yield of 17,309 Iranian Holstein dairy cows in 7 parities calved between 20 to 140 months between 2004 and 2011. Residual variances were modeled by homogeneous and step functions with 7 and 10 classes. Results: The results showed that a third order polynomial for additive genetic and permanent environmental effects plus a step function with 10 classes for the residual variance was the most adequate and parsimonious model to describe the covariance structure of the data. Heritability estimates obtained by this model varied from 0.17 to 0.28. The performance of this model was better than repeatability model. Moreover, 10 classes of residual variance produce the more accurate result than 7 classes or homogeneous residual effect. Conclusion: A quadratic Legendre polynomial for additive genetic and permanent environmental effects with 10 step function residual classes are sufficient to produce a parsimonious model that explained the change in 305-day milk yield over consecutive parities of Iranian Holstein cows.

SSI effects on seismic behavior of smart base-isolated structures

  • Shourestani, Saeed;Soltani, Fazlollah;Ghasemi, Mojtaba;Etedali, Sadegh
    • Geomechanics and Engineering
    • /
    • 제14권2호
    • /
    • pp.161-174
    • /
    • 2018
  • The present study investigates the soil-structure interaction (SSI) effects on the seismic performance of smart base-isolated structures. The adopted control algorithm for tuning the control force plays a key role in successful implementation of such structures; however, in most studied carried out in the literature, these algorithms are designed without considering the SSI effect. Considering the SSI effects, a linear quadratic regulator (LQR) controller is employed to seismic control of a smart base-isolated structure. A particle swarm optimization (PSO) algorithm is used to tune the gain matrix of the controller in both cases without and with SSI effects. In order to conduct a parametric study, three types of soil, three well-known earthquakes and a vast range of period of the superstructure are considered for assessment the SSI effects on seismic control process of the smart-base isolated structure. The adopted controller is able to make a significant reduction in base displacement. However, any attempt to decrease the maximum base displacement results in slight increasing in superstructure accelerations. The maximum and RMS base displacements of the smart base-isolated structures in the case of considering SSI effects are more than the corresponding responses in the case of ignoring SSI effects. Overall, it is also observed that the maximum and RMS base displacements of the structure are increased by increasing the natural period of the superstructure. Furthermore, it can be concluded that the maximum and RMS superstructure accelerations are significant influenced by the frequency content of earthquake excitations and the natural frequency of the superstructure. The results show that the design of the controller is very influenced by the SSI effects. In addition, the simulation results demonstrate that the ignoring the SSI effect provides an unfavorable control system, which may lead to decline in the seismic performance of the smart-base isolated structure including the SSI effects.

Undrained shear strength and microstructural characterization of treated soft soil with recycled materials

  • Al-Bared, Mohammed A.M.;Harahap, Indra S.H.;Marto, Aminaton;Abad, Seyed Vahid Alavi Nezhad Khalil;Ali, Montasir O.A.
    • Geomechanics and Engineering
    • /
    • 제18권4호
    • /
    • pp.427-437
    • /
    • 2019
  • Waste materials are being produced in huge quantities globally, and the usual practice is to dump them into legal or illegal landfills. Recycled tiles (RT) are being used in soil stabilisation which is considered as sustainable solution to reduce the amount of waste and solve the geotechnical problems. Although the stabilisation of soil using RT improved the soil properties, it could not achieve the standard values required for construction. Thus, this study uses 20% RT together with low cement content (2%) to stabilise soft soil. Series of consolidated undrained triaxial compression tests were conducted on untreated and RT-cement treated samples. Each test was performed at 7, 14, and 28 days curing period and 50, 100, and 200 kPa confining pressures. The results revealed an improvement in the undrained shear strength parameters (cohesion and internal frication angle) of treated specimens compared to the untreated ones. The cohesion and friction angle of the treated samples were increased with the increase in curing time and confining pressure. The peak deviator stress of treated samples increases with the increment of either the effective confining pressures or the curing period. Microstructural and chemical tests were performed on both untreated and RT-cement treated samples, which included field emission scanning electron microscopic (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and energy dispersive X-ray spectrometer (EDX). The results indicated the formation of cementation compounds such as calcium aluminium hydrate (C-A-H) within the treated samples. Consequently, the newly formed compounds were responsible for the improvement observed in the results of the triaxial tests. This research promotes the utilisation of RT to reduce the amount of cement used in soil stabilisation for cleaner planet and sustainable environment.

Mechanical behaviour of waste powdered tiles and Portland cement treated soft clay

  • Al-Bared, Mohammed A.M.;Harahap, Indra S.H.;Marto, Aminaton;Abad, Seyed Vahid Alavi Nezhad Khalil;Mustaffa, Zahiraniza;Ali, Montasir O.A.
    • Geomechanics and Engineering
    • /
    • 제19권1호
    • /
    • pp.37-47
    • /
    • 2019
  • The main objective of this study is to evaluate and compare the efficiency of ordinary Portland cement (OPC) in enhancing the unconfined compressive strength of soft soil alone and soft soil mixed with recycled tiles. The recycled tiles have been used to treat soft soil in a previous research by Al-Bared et al. (2019) and the results showed significant improvement, but the improved strength value was for samples treated with low cement content (2%). Hence, OPC is added alone in this research in various proportions and together with the optimum value of recycled tiles in order to investigate the improvement in the strength. The results of the compaction tests of the soft soil treated with recycled tiles and 2, 4, and 6% OPC revealed an increment in the maximum dry density and a decrement in the optimum moisture content. The optimum value of OPC was found to be 6%, at which the strength was the highest for both samples treated with OPC alone and samples treated with OPC and 20% recycled tiles. Under similar curing time, the strength of samples treated with recycled tiles and OPC was higher than the treated soil with the same percentage of OPC alone. The stress-strain curves showed ductile plastic behaviour for the untreated soft clay and brittle behaviour for almost all treated samples with OPC alone and OPC with recycled tiles. The microstructural tests indicated the formation of new cementitious products that were responsible for the improvement of the strength, such as calcium aluminium silicate hydrate. This research promotes recycled tiles as a green stabiliser for soil stabilisation capable of reducing the amount of OPC required for ground improvement. The replacement of OPC with recycled tiles resulted in higher strength compared to the control mix and this achievement may results in reducing both OPC in soil stabilisation and the disposal of recycled tiles into landfills.

Effect of flexural and shear stresses simultaneously for optimized design of butterfly-shaped dampers: Computational study

  • Farzampour, Alireza;Eatherton, Matthew R.;Mansouri, Iman;Hu, Jong Wan
    • Smart Structures and Systems
    • /
    • 제23권4호
    • /
    • pp.329-335
    • /
    • 2019
  • Structural fuses are made up from oriented steel plates to be used to resist seismic force with shear loading resistance capabilities. The damage and excessive inelastic deformations are concentrated in structural fuses to avoid any issues for the rest of the surrounding elements. Recently developed fuse plates are designed with engineered cutouts leaving flexural or shear links with controlled yielding features. A promising type of link is proposed to align better bending strength along the length of the link with the demand moment diagram is a butterfly-shaped link. Previously, the design methodologies are purely based on the flexural stresses, or shear stresses only, which overestimate the dampers capability for resisting against the applied loadings. This study is specifically focused on the optimized design methodologies for commonly used butterfly-shaped dampers. Numerous studies have shown that the stresses are not uniformly distributed along the length of the dampers; hence, the design methodology and the effective implementation of the steel need revisions and improvements. In this study, the effect of shear and flexural stresses on the behavior of butterfly-shaped links are computationally investigated. The mathematical models based on von-Mises yielding criteria are initially developed and the optimized design methodology is proposed based on the yielding criterion. The optimized design is refined and investigated with the aid of computational investigations in the next step. The proposed design methodology meets the needs of optimized design concepts for butterfly-shaped dampers considering the uniform stress distribution and efficient use of steel.

A new formulation for strength characteristics of steel slag aggregate concrete using an artificial intelligence-based approach

  • Awoyera, Paul O.;Mansouri, Iman;Abraham, Ajith;Viloria, Amelec
    • Computers and Concrete
    • /
    • 제27권4호
    • /
    • pp.333-341
    • /
    • 2021
  • Steel slag, an industrial reject from the steel rolling process, has been identified as one of the suitable, environmentally friendly materials for concrete production. Given that the coarse aggregate portion represents about 70% of concrete constituents, other economic approaches have been found in the use of alternative materials such as steel slag in concrete. Unfortunately, a standard framework for its application is still lacking. Therefore, this study proposed functional model equations for the determination of strength properties (compression and splitting tensile) of steel slag aggregate concrete (SSAC), using gene expression programming (GEP). The study, in the experimental phase, utilized steel slag as a partial replacement of crushed rock, in steps 20%, 40%, 60%, 80%, and 100%, respectively. The predictor variables included in the analysis were cement, sand, granite, steel slag, water/cement ratio, and curing regime (age). For the model development, 60-75% of the dataset was used as the training set, while the remaining data was used for testing the model. Empirical results illustrate that steel aggregate could be used up to 100% replacement of conventional aggregate, while also yielding comparable results as the latter. The GEP-based functional relations were tested statistically. The minimum absolute percentage error (MAPE), and root mean square error (RMSE) for compressive strength are 6.9 and 1.4, and 12.52 and 0.91 for the train and test datasets, respectively. With the consistency of both the training and testing datasets, the model has shown a strong capacity to predict the strength properties of SSAC. The results showed that the proposed model equations are reliably suitable for estimating SSAC strength properties. The GEP-based formula is relatively simple and useful for pre-design applications.

Inbreeding affected differently on observations distribution of a growth trait in Iranian Baluchi sheep

  • Binabaj, Fateme Bahri;Farhangfar, Seyyed Homayoun;Jafari, Majid
    • Animal Bioscience
    • /
    • 제34권4호
    • /
    • pp.506-515
    • /
    • 2021
  • Objective: Initial consequence of inbreeding is inbreeding depression which impairs the performance of growth, production, health, fertility and survival traits in different animal breeds and populations. The effect of inbreeding on economically important traits should be accurately estimated. The effect of inbreeding depression on growth traits in sheep has been reported in many breeds. Based on this, the main objective of the present research was to evaluate the impact of inbreeding on some growth traits of Iranian Baluchi sheep breed using quantile regression model. Methods: Pedigree and growth traits records of 13,633 Baluchi lambs born from year 1989 to 2016 were used in this research. The traits were birth weight, weaning weight, six-month weight, nine-month weight, and yearling weight. The contribution, inbreeding and co-ancestry software was used to calculate the pedigree statistics and inbreeding coefficients. To evaluate the impact of inbreeding on different quantiles of each growth trait, a series of quantile regression models were fitted using QUANTREG procedure of SAS software. Annual trend of inbreeding was also estimated fitting a simple linear regression of lamb's inbreeding coefficient on the birth year. Results: Average inbreeding coefficient of the population was 1.63 percent. Annual increase rate of inbreeding of the flock was 0.11 percent (p<0.01). The results showed that the effect of inbreeding in different quantiles of growth traits is not similar. Also, inbreeding affected differently on growth traits, considering lambs' sex and type of birth. Conclusion: Quantile regression revealed that inbreeding did not have similar effect on different quantiles of growth traits in Iranian Baluchi lambs indicating that at a given age and inbreeding coefficient, lambs with different sex and birth type were not equally influenced by inbreeding.

The efficacy of low-level diode laser versus laser acupuncture for the treatment of myofascial pain dysfunction syndrome (MPDS)

  • Khalighi, Hamid Reza;Mortazavi, Hamed;Mojahedi, Seyed Masoud;Azari-Marhabi, Saranaz;Parvaie, Parvin;Anbari, Fahimeh
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • 제22권1호
    • /
    • pp.19-27
    • /
    • 2022
  • Background: Myofascial pain dysfunction syndrome (MPDS) is the most common type of temporomandibular disorder. This study compared the efficacies of low-level diode laser therapy (LLLT) and laser acupuncture therapy (LAT) in the treatment of MPDS. Methods: This double-blind randomized controlled clinical trial included 24 patients with MPDS who were randomly divided into two equally sized groups. Patients in the LLLT group received 12 sessions of low-level diode laser irradiation applied to the trigger points of the masticatory muscles during 1 month. The same protocol was also used in the LAT group according to the specific trigger points. We measured pain intensity and maximum mouth opening in both groups at baseline, during treatment, and 2 months after treatment completion. Results: The pain intensities decreased from 6.58±1.31 to 0.33±0.65 and from 7.08 ± 1.37 to 0 in the LLLT and LAT groups, respectively. The maximum mouth openings increased from 32.25 ± 8.78 mm to 42.58 ± 4.75 mm and from 33 ± 6.57 mm to 45.67 ± 3.86 mm in the LLLT and LAT groups, respectively. Pain intensity (P = 0.839) and level of maximum mouth opening (P = 0.790) did not differ significantly between the groups. Conclusion: Our results showed similar efficacy between LLLT and LAT in the treatment of MPDS signs and symptoms.