• Title/Summary/Keyword: Bipolar plates

Search Result 111, Processing Time 0.03 seconds

The Performance Evaluation of Metallic Bipolar Plates of Fuel Cells for a Small Reconnaissance UAV (소형 정찰 UAV를 위한 연료전지 금속 분리판의 성능 평가)

  • Kim, Ki-In;Lee, Jong-Kwang;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.278-281
    • /
    • 2009
  • The performance of aluminum bipolar plates was evaluated for the lightweight fuel cell system as a power source for a small reconnaissance UAV. Higher performance per weight was obtained from aluminum bipolar plates than the graphite bipolar plates. To check the influence of operating temperature, the performance of a single cell using aluminum bipolar plates was evaluated at 40 / 50 / $60^{\circ}C$. When dry hydrogen and air were used, the finest performance was obtained at $40^{\circ}C$, a lower operating temperature compared with usual operating temperatures.

  • PDF

Development and characterization of graphite reinforced conductive polymer composites for PEMFC bipolar plates (고분자전해질 연료전지용 흑연계 복합소재 분리판 개발)

  • Heo Seongil;Yun Jincheol;Oh Kyeongseok;Han Kyungseop
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.248-251
    • /
    • 2005
  • Graphite reinforced conductive polymer composites for PEMFC bipolar plates were fabricated by the compression molding technique. Graphite powder was mixed with an phenol resin to impart electrical property in composites. In this study, conductive polymer composites with high filler $loadings(>60wt.\%)$ were manufactured to accomplish high electrical conductivity above 100S/cm. The level of compaction is important because graphite powder increase electrical conductivity of composites by direct physical contact between particles. The optimum molding pressure according to filler was proposed experimentally. Various tests(electrical conductivity, flexural strength, compressive strength, leach test, etc) were carried out to verify the performance of fabricated composites for PEMFC bipolar plates. Fabricated composites have good electrical conductivity and mechanical strength. The results of leach test and contact angle measurement showed similar characteristics compared with commercial bipolar plates.

  • PDF

Effect of Iodine-coated Bipolar Plates on the Performance of a Polymer Exchange Membrane (PEM) Fuel Cell (고분자 전해질 막 연료전지에서의 아이오딘이 코팅된 분리판의 성능 효과)

  • Kim, Taeeon;Juon, Some;Cho, Kwangyeon;Shul, Yonggun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.61-69
    • /
    • 2013
  • Polymer exchange membrane (PEM) fuel cells have multifunctional properties, and bipolar plates are one of the key components in these fuel cells. Generally, a bipolar plate has a gas flow path for hydrogen and oxygen liberated at the anode and cathode, respectively. In this study, the influence of iodine applied to a bipolar plate was investigated. Accordingly, we compared bipolar plates with and without iodine coating, and the performances of these plates were evaluated under operating conditions of $75^{\circ}C$ and 100% relative humidity. The membrane and platinum-carbon layer were affected by the iodine-coated bipolar plate. Bipolar plates coated with iodine and a membrane-electrode assembly (MEA) were investigated by electron probe microanalyzer (EPMA) and energy-dispersive x-ray spectroscopy (EDS) analysis. Polarization curves showed that the performance of a coated bipolar plate is approximately 19% higher than that of a plate without coating. Moreover, electrochemical impedance spectroscopy (EIS) analysis revealed that charge transfer resistance and membrane resistance decreased with the influence of the iodine charge transfer complex for fuel cells on the performance.

Surface treatment of bipolar plates for PEMFC (Proton Exchange Membrane Fuel Cell) application (PEMFC (Proton Exchange Membrane Fuel Cell)용 바이폴라 플레이트 표면개질)

  • Jeon, Gwang-Yeon;Yun, Young-Hoon;Cha, In-Su
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.643-645
    • /
    • 2008
  • Stainless steel 304 and 316 plates were deposited with the multi-layered coatings of titanium film (0.1um) and gold film (1-2um) by an electron beam evaporation method. The XRD patterns of the stainless steel plates modified with the multi-layered coatings showed the crystalline phases of the external gold film and the stainless steel substrate. Surface microstructural morphologies of the stainless steel bipolar plates modified with multi-layered coatings were observed by AFM and FE-SEM images. The external gold films formed on the stainless steel plates showed microstructure of grains of about 100nm diameter. The grain size of the external surface of the stainless steel plates increased with the gold film thickness. The electrical resistance and water contact angle of the stainless steel bipolar plates covered with multi-layered coatings were examined with the thickness of the external gold film.

  • PDF

Surface Coating and Corrosion Characteristics of Bipolar Plates of PEMFC Application (PEMFC용 분리판 표면코팅 및 부식성 평가)

  • Kang, Kyung-Min;Kim, Dong-Mook;Choi, Jeong-Sik;Cha, In-Soo;Yun, Young-Hoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.199-205
    • /
    • 2011
  • Stainless steel 304 and 316 plates were deposited with the multi-layered coatings of titanium film (0.1 um) and gold film (1-2 um) by an electron beam evaporation method. The XRD patterns of the stainless steel plates modified with the multi-layered coatings showed the crystalline phases of the external gold film and the stainless steel substrate. Surface microstructural morphologies of the stainless steel bipolar plates modified with multi-layered coatings were observed by AFM and FE-SEM images. The external gold films formed on the stainless steel plates showed micro structure of grains of about 100 nm diameter. The grain size of the external surface of the stainless steel plates increased with the gold film thickness. The electrical resistance and water contact angle of the stainless steel bipolar plates covered with multi-layered coatings were examined with the thickness of the external gold film.

Optimization of Automotive PEMFC Bipolar Plates considering Heat Transfer and Thermal Loads (열전달 및 열하중을 고려한 자동차 연료전지(PEMFC) 분리판의 두께 최적설계)

  • Kim, Young-Sung;Kim, Cheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.34-40
    • /
    • 2015
  • A stack in the proton exchange membrane fuel cell (PEMFC) consists of bipolar plates, a membrane electrode assembly, a gas diffusion layer, a collector and end plates. High current density is usually obtainable partially from uniform temperature distribution in the fuel cell. A size optimization method considering the thermal expansion effect of stacked plates was developed on the basis of finite element analyses. The thermal stresses in end, bipolar, and cooling plates were calculated based on temperature distribution obtained from thermal analyses. Finally, the optimization method was applied and optimum thicknesses of the three plates were calculated considering both fastening bolt tension and thermal expansion of each unit cell (72 cells, 5kW). The optimum design considering both thermal and mechanical loads increases the thickness of an end plate by 0.64-0.83% the case considering only mechanical load. The effect can be enlarged if the number of stack increases as in an automotive application to 200-300 stacks.

Development and Evaluation of Bipolar Plates Coated with Noble Metals for Polymer Electrolyte Membrane Fuel Cells (Noble Metal이 코팅된 금속분리판 개발 및 성능 평가)

  • Seo, Hakyu;Han, In-Su;Jung, Jeehoon;Kim, Minsung;Shin, Hyungil;Hur, Taeuk;Cho, Sungbaek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.90.2-90.2
    • /
    • 2010
  • The coated metallic bipolar plates are getting attractive due to their good feasibility of mass production, low contact resistance, high electrical/thermal conductivity, low gas permeability and good mechanical strength comparing with graphite materials. Yet, metallic bipolar plates for polymer electrolyte membrane(PEM) fuel cells typically require coatings for corrosion protection. Other requirements for the corrosion protective coatings include low electrical contact resistance between metallic bipolar plate and gas diffusion layer, good mechanical robustness, low mechanical and fabrication cost. The authors have evaluated a number of protective coatings deposited on stainless steel substrate by electroplating. The coated metallic bipolar plates are investigated with an electrochemical polarization tests, salt dipping tests, adhesion tests for corrosion resistance and then the contact resistance was measured. The results showed that the selective samples electroplated with optimized method, satisfied the DOE target for corrosion resistance and contact resistance, and also were very stabilized in the typical fuel cell environments in the long-term.

  • PDF

Development of Lightweight Direct Methanol Fuel Cell (DMFC) Stack Using Metallic Bipolar Plates for Unmanned Aerial Vehicles (UAVs) (금속분리판을 이용한 무인기항공기(UAV)용 경량화 DMFC 스택 개발)

  • LEE, SUWON;KIM, DOHWAN;RO, JUNGHO;CHO, YOUNGRAE;KIM, DOYOUN;JU, HYUNCHUL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.5
    • /
    • pp.492-501
    • /
    • 2017
  • A 900 W scale direct methanol fuel cell (DMFC) stack is designed and fabricated for unmanned aerial vehicle (UAV) applications. To meet the volume and weight requirements, metallic bipolar plates are applied to the DMFC stack for the first time wherein POS470FC was chosen as bipolar plate material. To ensure good robustness of the metallic bipolar plate based DMFC stack, finite element method based simulations are conducted using a commercial ANSYS Fluent software. The stress buildup and deformation characteristics on bipolar plates and end plates are analyzed in details. The present DMFC stack exhibits the performance of 1,130 W at 32 V and 35.3 A, clearly demonstrating that it could successfully operate for UAVs requiring around 1,000 W of power.

Development of Carbon Composite Bipolar Plates for PEMFC (양성자 교환막 연료전지용 탄소 복합재료 분리판 개발)

  • Lim, Jun Woo
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.222-228
    • /
    • 2019
  • The proton exchange membrane fuel cell (PEMFC) system has many potential uses as an environmentally friendly power source. Carbon fiber composite bipolar plates are highly corrosion resistant and have high specific strength and stiffness in acidic environments, however, the relatively low electrical conductivity is a major issue which reduces the efficiency of PEMFC. In this study, electrically conductive particles (graphite powder and carbon black) are applied to carbon-epoxy composite prepregs to reduce the electrical resistance of the bipolar plates. The electrical resistance and mechanical properties are measured using conventional test methods, and a unit cell performance evaluation of developed carbon composite bipolar plates is performed to compare with the conventional bipolar plate.

Evaluation of developed bipolar plates for PEMFC (고분자 전해질 연료전지 분리판 개발 및 평가)

  • Ahn, Seong-Soo;Oh, Jae-Yeol;Lee, Kyoung-Jun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.73-76
    • /
    • 2008
  • Bipolar Plates for PEMFC have been a key component of fuel cells with MEA, thus in this research they have been fabricated by a compression molding technique after mixing graphite powder with phenol resin. The results have shown the prominent properties compared with those by foreign advanced company with respect to the electrical conductivity and flexural strength. In addition, it has been carried out that the Voltage-Current characteristics comparison according to the unit cell experiments of bipolar plates. As a result, we have obtained good performances and we are going to research the molding feasibility of bipolar plate's flow channel.

  • PDF